4.6 Article

Heating dynamics of bosonic atoms in a noisy optical lattice

期刊

PHYSICAL REVIEW A
卷 87, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.87.033606

关键词

-

资金

  1. Austrian Science Fund [SFB F40 FOQUS]
  2. US Army Research Office
  3. DARPA OLE program
  4. AFOSR [FA9550-12-1-0057]
  5. Center for Simulation and Modeling at the University of Pittsburgh

向作者/读者索取更多资源

We analyze the heating of interacting bosonic atoms in an optical lattice due to intensity fluctuations of the lasers forming the lattice. We focus in particular on fluctuations at low frequencies below the band-gap frequency, such that the dynamics is restricted to the lowest band. We derive stochastic equations of motion, and analyze the effects on different many-body states, characterizing heating processes in both strongly and weakly interacting regimes. In the limit where the noise spectrum is flat at low frequencies, we can derive an effective master equation describing the dynamics. We compute heating rates and changes to characteristic correlation functions both in the perturbation theory limit and using a full time-dependent calculation of the stochastic many-body dynamics in one dimension based on time-dependent density-matrix-renormalization-group methods. DOI: 10.1103/PhysRevA.87.033606

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据