4.6 Article

Fidelity of a Rydberg-blockade quantum gate from simulated quantum process tomography

期刊

PHYSICAL REVIEW A
卷 85, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.85.042310

关键词

-

资金

  1. NSF [PHY-1005550]
  2. IARPA MQCO through ARO [W911NF-10-1-0347]
  3. DARPA
  4. Division Of Physics
  5. Direct For Mathematical & Physical Scien [1104531] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present a detailed error analysis of a Rydberg blockade mediated controlled-NOT quantum gate between two neutral atoms as demonstrated recently in Isenhower et al. [Phys. Rev. Lett. 104, 010503 (2010)] and Zhang et al. [Phys. Rev. A 82, 030306 (2010)]. Numerical solutions of a master equation for the gate dynamics, including all known sources of technical error, are shown to be in good agreement with experiments. The primary sources of gate error are identified and suggestions given for future improvements. We also present numerical simulations of quantum process tomography to find the intrinsic fidelity, neglecting technical errors, of a Rydberg blockade controlled phase gate. The gate fidelity is characterized using trace overlap and trace distance measures. We show that the trace distance is linearly sensitive to errors arising from the finite Rydberg blockade shift and introduce a modified pulse sequence which corrects the linear errors. Our analysis shows that the intrinsic gate error extracted from simulated quantum process tomography can be under 0.002 for specific states of Rb-87 or Cs atoms. The relation between the process fidelity and the gate error probability used in calculations of fault tolerance thresholds is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据