4.6 Article

Semi-device-independent bounds on entanglement

期刊

PHYSICAL REVIEW A
卷 83, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.022108

关键词

-

资金

  1. Australian Research Council
  2. Swiss NCCR Quantum Photonics
  3. European ERC-AG QORE
  4. Hungarian Academy of Sciences
  5. UK EPSRC

向作者/读者索取更多资源

Detection and quantification of entanglement in quantum resources are two key steps in the implementation of various quantum-information processing tasks. Here, we show that Bell-type inequalities are not only useful in verifying the presence of entanglement but can also be used to bound the entanglement of the underlying physical system. Our main tool consists of a family of Clauser-Horne-like Bell inequalities that cannot be violated maximally by any finite-dimensional maximally entangled state. Using these inequalities, we demonstrate the explicit construction of both lower and upper bounds on the concurrence for two-qubit states. The fact that these bounds arise from Bell-type inequalities also allows them to be obtained in a semi-device-independent manner, that is, with assumption of the dimension of the Hilbert space but without resorting to any knowledge of the actual measurements being performed on the individual subsystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据