4.6 Article

Strong quantitative benchmarking of quantum optical devices

期刊

PHYSICAL REVIEW A
卷 83, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.052320

关键词

-

资金

  1. NSERC
  2. Ontario Graduate Scholarship program

向作者/读者索取更多资源

Quantum communication devices, such as quantum repeaters, quantum memories, or quantum channels, are unavoidably exposed to imperfections. However, the presence of imperfections can be tolerated, as long as we can verify that such devices retain their quantum advantages. Benchmarks based on witnessing entanglement have proven useful for verifying the true quantum nature of these devices. The next challenge is to characterize how strongly a device is within the quantum domain. We present a method, based on entanglement measures and rigorous state truncation, which allows us to characterize the degree of quantumness of optical devices. This method serves as a quantitative extension to a large class of previously known quantum benchmarks, requiring no additional information beyond what is already used for the nonquantitative benchmarks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据