4.6 Article

Information propagation for interacting-particle systems

期刊

PHYSICAL REVIEW A
卷 84, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.84.032309

关键词

-

资金

  1. EU (COMPAS, MINOS, QESSENCE)
  2. EURYI
  3. BMBF (QuOReP)
  4. Gordon and Betty Moore Foundation through Caltech's Center for the Physics of Information
  5. National Science Foundation [PHY-0803371]
  6. ARO [W911NF-09-1-0442]

向作者/读者索取更多资源

We study the speed at which information propagates through systems of interacting quantum particles moving on a regular lattice and show that for a certain class of initial conditions there exists a maximum speed of sound at which information can propagate. Our argument applies equally to quantum spins, bosons such as in the Bose-Hubbard model, fermions, anyons, and general mixtures thereof, on arbitrary lattices of any dimension. It also pertains to dissipative dynamics on the lattice, and generalizes to the continuum for quantum fields. Our result can be seen as an analog of the Lieb-Robinson bound for strongly correlated models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Mathematical

Efficient Unitary Designs with a System-Size Independent Number of Non-Clifford Gates

J. Haferkamp, F. Montealegre-Mora, M. Heinrich, J. Eisert, D. Gross, I Roth

Summary: Many quantum information protocols require the use of random unitaries, and unitary t-designs are often used as an alternative to Haar-random unitaries. In this work, we explore the non-Clifford resources needed to break the limitation of only being able to implement up to 3-designs with Clifford operations. We find that injecting a certain number of non-Clifford gates into a random Clifford circuit can produce an epsilon-approximate t-design, regardless of the system size. We also derive new bounds on the convergence time of random Clifford circuits to the t-th moment of the uniform distribution on the Clifford group.

COMMUNICATIONS IN MATHEMATICAL PHYSICS (2023)

Article Physics, Multidisciplinary

One T Gate Makes Distribution Learning Hard

M. Hinsche, M. Ioannou, A. Nietner, J. Haferkamp, Y. Quek, D. Hangleiter, J. -P. Seifert, J. Eisert, R. Sweke

Summary: The task of learning a probability distribution from samples is common in the natural sciences. This study extensively characterizes the learnability of output distributions from local quantum circuits. The results show that Clifford circuit output distributions are efficiently learnable, but the injection of a single T gate makes density modeling task difficult. Additionally, generative modeling of universal quantum circuits is hard for any learning algorithm, classical or quantum, indicating no quantum advantage for probabilistic modeling tasks.

PHYSICAL REVIEW LETTERS (2023)

Article Multidisciplinary Sciences

Experimental observation of curved light-cones in a quantum field simulator

Mohammadamin Tajik, Marek Gluza, Nicolas Sebe, Philipp Schuettelkopf, Federica Cataldini, Joao Sabino, Frederik Moller, Si-Cong Ji, Sebastian Erne, Giacomo Guarnieri, Spyros Sotiriadis, Jens Eisert, Jorg Schmiedmayer

Summary: We investigate signal propagation in a quantum field simulator of the Klein-Gordon model using two strongly coupled parallel one-dimensional quasi-condensates. We observe the propagation of correlations along sharp light-cone fronts by measuring local phononic fields after a quench. The curved propagation fronts and reflection at sharp edges are observed when the local atomic density is inhomogeneous. By comparing the data with theoretical predictions, we find agreement with curved geodesics of an inhomogeneous metric.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2023)

Article Quantum Science & Technology

Exploiting Symmetry in Variational Quantum Machine Learning

Johannes Jakob Meyer, Marian Mularski, Elies Gil-Fuster, Antonio Anna Mele, Francesco Arzani, Alissa Wilms, Jens Eisert

Summary: Variational quantum machine learning is a widely studied application of near-term quantum computers. This work explores how symmetries of the learning problem can be used to construct quantum learning models with symmetrical outcomes. By utilizing tools from representation theory, a standard gateset can be transformed into an equivariant gateset that respects the symmetries of the problem. The proposed methods are benchmarked on toy problems and show a substantial increase in generalization performance.

PRX QUANTUM (2023)

Article Physics, Multidisciplinary

Detecting Emergent Continuous Symmetries at Quantum Criticality

Mingru Yang, Bram Vanhecke, Norbert Schuch

Summary: New or enlarged symmetries can emerge at the low-energy spectrum of a Hamiltonian that does not possess the symmetries, if the symmetry breaking terms in the Hamiltonian are irrelevant under the renormalization group flow. We propose a tensor network based algorithm to numerically extract lattice operator approximation of the emergent conserved currents from the ground state of any quantum spin chains, without the necessity to have prior knowledge about its low-energy effective field theory. Our results for the spin-1/2 J-Q Heisenberg chain and a one-dimensional version of the deconfined quantum critical points demonstrate the power of our method to obtain the emergent lattice Kac-Moody generators. It can also be viewed as a way to find the local integrals of motion of an integrable model and the local parent Hamiltonian of a critical gapless ground state.

PHYSICAL REVIEW LETTERS (2023)

Review Physics, Multidisciplinary

Computational advantage of quantum random sampling

Dominik Hangleiter, Jens Eisert

Summary: Quantum random sampling is the main proposal to demonstrate the computational advantage of quantum computers over classical computers. Recent large-scale implementations of quantum random sampling have possibly surpassed the capabilities of existing classical hardware for simulation. This review comprehensively discusses the theoretical basis and practical implementation of quantum random sampling, as well as its classical simulation, and explores open questions and potential applications in the field.

REVIEWS OF MODERN PHYSICS (2023)

Article Multidisciplinary Sciences

Shadow estimation of gate-set properties from random sequences

J. Helsen, M. Ioannou, J. Kitzinger, E. Onorati, A. H. Werner, J. Eisert, I. Roth

Summary: With quantum computing devices becoming more complex, there is a need for tools that can provide precise diagnostic information about quantum operations. The authors propose a new approach that uses random gate sequences and native measurements followed by classical post-processing to estimate various gate set properties. They also discuss applications for optimizing quantum gates and diagnosing cross-talk. This research is important for the development and improvement of quantum computing devices.

NATURE COMMUNICATIONS (2023)

Article Multidisciplinary Sciences

Quantum simulation of thermodynamics in an integrated quantum photonic processor

F. H. B. Somhorst, R. van der Meer, M. Correa Anguita, R. Schadow, H. J. Snijders, M. de Goede, B. Kassenberg, P. Venderbosch, C. Taballione, J. P. Epping, H. H. van den Vlekkert, J. Timmerhuis, J. F. F. Bulmer, J. Lugani, I. A. Walmsley, P. W. H. Pinkse, J. Eisert, N. Walk, J. J. Renema

Summary: This study demonstrates that in a unitarily evolving system, single-mode measurements can converge to a thermal state using photons in an integrated optical interferometer. The resolution to the paradox between unitary evolution and the second law of thermodynamics is the recognition that the global unitary evolution of a multi-partite quantum state causes local subsystems to evolve towards maximum-entropy states. The experiment utilizes a programmable integrated quantum photonic processor to manipulate quantum states and shows the potential of photonic devices for simulating non-Gaussian states.

NATURE COMMUNICATIONS (2023)

Article Optics

Quantum machine learning of graph-structured data

Kerstin Beer, Megha Khosla, Julius Koehler, Tobias J. Osborne, Tianqi Zhao

Summary: In this paper, an approach is developed to improve learning efficiency by leveraging the graph structure of the quantum source for an arbitrary quantum neural network (QNN) ansatz. A self-supervised objective is devised and optimized to capture the information-theoretic closeness of quantum states during QNN training. Numerical simulations demonstrate that this approach enhances learning efficiency and generalization behavior of the base QNN. Moreover, scalable quantum implementations of the learning procedure described in this paper are likely feasible on the next generation of quantum computing devices.

PHYSICAL REVIEW A (2023)

Article Quantum Science & Technology

Semi-device-dependent blind quantum tomography

Ingo Roth, Jadwiga Wilkens, Dominik Hangleiter, Jens Eisert

Summary: Extracting tomographic information about quantum states is crucial in developing high-precision quantum devices. This study shows that by exploiting the low-rank structure of quantum states, a scalable 'blind' tomography scheme can be achieved with a computationally efficient post-processing algorithm. The efficiency of the scheme is further improved by utilizing the sparse structure of the calibrations.

QUANTUM (2023)

Article Optics

Stochastic integral representation for the dynamics of disordered systems

Ivana Kurecic, Tobias J. Osborne

Summary: The dynamics of interacting quantum systems in the presence of disorder is studied and an exact representation for disorder-averaged quantities via Ito stochastic calculus is obtained. The stochastic integral representation allows for analytic approximation, potential applicability to interacting systems, and compatibility with tensor network methods. The integral can be expanded to produce a series of approximations, the first of which includes all diffusive corrections and is manifestly completely positive. As examples, expressions for the density of states and spectral form factor for the Anderson model are obtained.

PHYSICAL REVIEW A (2023)

Article Optics

Superpolynomial quantum-classical separation for density modeling

Niklas Pirnay, Ryan Sweke, Jens Eisert, Jean-Pierre Seifert

Summary: Density modeling is the task of learning an unknown probability density function from samples, and it is a central problem in unsupervised machine learning. This research demonstrates that fault-tolerant quantum computers can offer a superpolynomial advantage over classical learning algorithms in a specific density modeling problem, assuming standard cryptographic assumptions. The results also provide insights for future distribution learning separations between quantum and classical learning algorithms, including the relationship between hardness results in supervised learning and distribution learning.

PHYSICAL REVIEW A (2023)

Article Materials Science, Multidisciplinary

Tensor network study of the spin-1/2 Heisenberg antiferromagnet on the shuriken lattice

Philipp Schmoll, Augustine Kshetrimayum, Jan Naumann, Jens Eisert, Yasir Iqbal

Summary: We investigate the ground state of the spin S = 1/2 Heisenberg antiferromagnet on the shuriken lattice, and found that a valence bond crystal with resonances over length six loops emerges as the ground state, yielding the lowest reported estimate of the ground state energy for this model. We also study the model in the presence of an external magnetic field and find the emergence of 0, 1/3, and 2/3 magnetization plateaus, with the 1/3 and 2/3 plateau states respecting translation and point group symmetries and featuring loop-four plaquette resonances.

PHYSICAL REVIEW B (2023)

Article Quantum Science & Technology

Correcting non-independent and non-identically distributed errors with surface codes

Konstantin Tiurev, Peter-Jan H. S. Derks, Joschka Roffe, Jens Eisert, Jan-Michael Reiner

Summary: This study develops topological surface codes adapted to known noise structures and investigates their performance with specific decoders. Experimental results show that this approach significantly improves error thresholds and reduces failure rates. Furthermore, the study reveals the importance of tailored surface codes in correcting local noise.

QUANTUM (2023)

Article Quantum Science & Technology

Anonymous conference key agreement in linear quantum networks

Jarn de Jong, Frederik Hahn, Jens Eisert, Nathan Walk, Anna Pappa

Summary: Sharing multi-partite quantum entanglement allows for diverse secure communication tasks. In this work, an anonymous CKA protocol for three parties is proposed, implemented in a highly practical network setting using a linear cluster state among quantum nodes. The protocol protects the identities of the participants and contributes to identifying feasible quantum communication tasks for network architectures beyond point-to-point.

QUANTUM (2023)

暂无数据