4.6 Article

Phases in the temporal multiscale evolution of the drug release mechanism in IPN-type chitosan based hydrogels

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 47, 页码 25896-25905

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp03389b

关键词

-

向作者/读者索取更多资源

The study proposes modeling calcein release kinetics (considered as a hydrophilic drug model) from an interpenetrating network matrix of hydrogels, based on the combination of two polymers, of which chitosan is the most commonly used polymer. The release process is analyzed for different increasing time intervals, based on the evolution of the release kinetics. For each time interval, a dominant release mechanism was identified and quantitative analyses were performed, to probe the existence of four distinct stages during its evolution with each stage governed by a different kinetics model. An interesting and original aspect, which is analyzed through a novel approach, is that of drug release at longer time scales, which is often overlooked. It revealed that the system behaves as a complex one and its evolution can be described through a nonlinear theoretical model, which offers us new insights into its order-disorder evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据