4.6 Article

DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 2, 页码 743-752

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp53161a

关键词

-

资金

  1. CONACYT

向作者/读者索取更多资源

New materials with high intercalation capacity are needed for cathodic materials in order to overcome small capacities at high discharge rates in Li-ion batteries. High intercalation capacities have been reported in the experimental setup using iron phthalocyanine (FePc) as cathodic material; however the real intercalation capacity and the chemistry occurring during the intercalation process are still being debated. In this work we analyze the intercalation of Li atoms in FePc periodic structures using density functional theory including a semi-empirical approach to represent van der Waals (vdW) forces. Within this approach we find intercalation capacities of about 20 Li atoms per FePc molecule at a discharge voltage of similar to 0.5 V (with respect to Li/Li+), and up to 37 Li atoms at lower voltages. The intercalation process is driven mainly by electrostatic interactions between positively charged Li ions and negatively charged FePc molecules, with vdW interactions playing an essential role in reaching the high number of intercalated Li atoms. The reduction of the central Fe atom leading to charges evolving from +1.2 to -0.2 is responsible for the high intercalation voltage; however the further reduction contributions of N, C, and even H atoms make FePc a suitable cathode for Li-ion battery applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据