4.6 Article

An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 21, 页码 8254-8263

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp44513e

关键词

-

资金

  1. EPSRC [EP/H00064X]

向作者/读者索取更多资源

Anatase TiO2 thin-films were formed on glass by a sol-gel dip-coating method and annealed at 500 degrees C. Ag nanoparticles were grown on the surface of TiO2 by a photo-assisted process from AgNO3 salt using either UVC - 254 nm or UVA - 365 nm light. The size, shape and coverage of the particles were assessed by scanning electron microscopy. Changes in surface plasmon properties were investigated by UV-visible spectroscopy. A greater level of spherical Ag nanoparticles grew on TiO2 when using UVA light (365 nm); with particles 96 +/- 33 nm wide on average and covering 29% of the surface. In the case of UVC light (254 nm), particles were 78 +/- 14 nm wide on average and covered 13% of the surface. EXAFS measurements performed in situ of the Ag K-edge showed that the photo-assisted growth was more rapid when UVA light was used, leading to the full conversion of the AgNO3 salt layer in approximate to 1900 seconds. When UVC light was used, approximate to 50% of the salt layer was converted in approximate to 6100 seconds. The inhibited growth under UVC conditions was attributed to the absorption of light by the Ag nanoparticles as they formed (as opposed to the semiconductor beneath). The films also displayed reversible photochromism. The change in phase from the coloured (metallic Ag) to the bleached state (oxidized Ag) was identified using EXAFS spectroscopy. By comparing the EXAFS pattern with simulated model structures, it was shown that the transition from cubic Ag to cubic Ag2O was most likely, with an approximate to 70% conversion with 12 hours of white light irradiance. We believe that this is the first time the bleached form of silver in photochromic Ag-TiO2 thin-films has been identified by a direct method. In addition, we believe that this is the first case in which the photo-assisted formation of Ag-TiO2 has been monitored in situ under ambient temperature and pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Porous Carbon Coated on Cadmium Sulfide-Decorated Zinc Oxide Nanorod Photocathodes for Photo-accelerated Zinc Ion Capacitors

Xiaopeng Liu, Holly Andersen, Yinan Lu, Bo Wen, Ivan P. Parkin, Michael De Volder, Buddha Deka Boruah

Summary: The development of devices with dual solar energy-harvesting and storage functionalities has gained traction for off-grid power supply. In this study, a porous carbon coated on a zinc oxide-cadmium sulfide heterostructure was proposed as an energy efficient photocathode for photo-accelerated zinc ion capacitors (Photo-ZICs). The Photo-ZICs demonstrated efficient charge storage performance under illumination compared to dark conditions, along with stable charge storage capacities over long-term cycling.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

MOF-Derived Defective Co3O4 Nanosheets in Carbon Nitride Nanocomposites for CO2 Photoreduction and H2 Production

Maria Anagnostopoulou, Areti Zindrou, Thomas Cottineau, Andreas Kafizas, Clement Marchal, Yiannis Deligiannakis, Valerie Keller, Konstantinos C. Christoforidis

Summary: This work reports the development of tunable organic/inorganic heterojunctions comprised of cobalt oxides (Co3O4) and modified carbon nitride (CN), targeting on optimizing their response under UV-visible irradiation. The study highlights the importance of MOF structures used as precursors in forming advanced materials and the stepwise functionalization of the individual parts in nanocomposites for the development of materials with superior activity.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Photo-enhanced lithium-ion batteries using metal-organic frameworks

Holly Andersen, Yinan Lu, Joanna Borowiec, Ivan P. Parkin, Michael De Volder, Buddha Deka Boruah

Summary: The development of photo-enhanced lithium-ion batteries, where exposing the electrodes to light results in higher capacities, higher rate performance or self-charging, has recently gained substantial traction. The challenge in these devices lies in the realisation of photo-electrodes with good optical and electrochemical properties. Herein, we propose copper-hexahydroxybenzene as the active photo-electrode material which both harvests light and stores energy. This material was mixed with reduced graphene oxide as a conductive additive and charge transfer medium to create photo-active electrodes. Under illumination, these electrodes show improved charge storage kinetics resulting in the photo-accelerated charging and discharging performance (i.e. specific capacities improvement from 107 mA h g(-1) to 126 mA h g(-1) at 200 mA g(-1) and 79 mA h g(-1) to 97 mA h g(-1) at 2000 mA g(-1) under 1 sun illumination as compared to dark).

NANOSCALE (2023)

Article Chemistry, Multidisciplinary

When It's Heavier: Interfacial and Solvation Chemistry of Isotopes in Aqueous Electrolytes for Zn-ion Batteries

Xuan Gao, Yuhang Dai, Chengyi Zhang, Yixuan Zhang, Wei Zong, Wei Zhang, Ruwei Chen, Jiexin Zhu, Xueying Hu, Mingyue Wang, Ruizhe Chen, Zijuan Du, Fei Guo, Haobo Dong, Yiyang Liu, Hongzhen He, Siyu Zhao, Fangjia Zhao, Jianwei Li, Ivan P. Parkin, Claire J. Carmalt, Guanjie He

Summary: The use of the isotope electrochemical effect (EEI) of water in Zn-ion batteries (ZIBs) electrolyte addresses the challenges of side reactions and gas production. The low diffusion and strong coordination of ions in D2O reduce the possibility of side reactions, resulting in a broader potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. D2O also eliminates different ZHS phases caused by changes in bound water, leading to a stable electrode-electrolyte interface. Full cells with D2O-based electrolyte demonstrate stable cycling performance with high reversible efficiencies and wide voltage windows.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

A Single-Step Route to Robust and Fluorine-Free Superhydrophobic Coatings via Aerosol-Assisted Chemical Vapor Deposition

Julie Jalila Kalmoni, Frances L. Heale, Christopher S. Blackman, Ivan P. Parkin, Claire J. Carmalt

Summary: Robust fluorine-free superhydrophobic films were successfully prepared using a mixture of fatty acids, SiO2 nanoparticles, and polydimethylsiloxane. The films exhibited a highly textured morphology, with a water contact angle of 162 +/- 2 degrees and a sliding angle of <5 degrees. The superhydrophobicity of the films remained intact even after exposure to UV light, heat treatment, multiple tape peeling cycles, and various organic solvents.

LANGMUIR (2023)

Article Chemistry, Physical

Highly Conductive Tungsten-Doped Tin(IV) Oxide Transparent Electrodes Delivered by Lattice-Strain Control

Sanjayan Sathasivam, Sapna D. Ponja, Seonghyeok Park, Clara Sanchez-Perez, Christopher Blackman, Ivan P. Parkin, Claire J. Carmalt

Summary: Alternatives to tin-doped indium oxide transparent electrodes are required. Tungsten-doped SnO2 thin films with low resistivities and high electron mobilities were obtained using chemical vapor deposition. The tungsten dopant had minimal distortion to the SnO2 unit cell and resulted in crystallographic preferential orientation in the [200] direction. X-ray photoelectron spectroscopy analysis indicated that tungsten was present in the +5 state, minimizing ionized impurity scattering and achieving high electron mobilities. The tungsten-doped films had an optical band gap of 3.7 eV, making them transparent to visible light.

ACS APPLIED ENERGY MATERIALS (2023)

Article Nanoscience & Nanotechnology

Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure

Mingyue Wang, Raul Quesada-Cabrera, Sanjayan Sathasivam, Matthew O. Blunt, Joanna Borowiec, Claire J. Carmalt

Summary: This study fabricated visible-light-activated iodide-doped BiOBr thin films using aerosol-assisted chemical vapor deposition. The optimized material with 2.7% iodide dopant exhibited the highest photocatalytic performance under 450 nm irradiation, making it an excellent candidate for the photodegradation of volatile organic pollutants.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

Phase Quantification of Heterogeneous Surfaces Using DFT-Simulated Valence Band Photoemission Spectra

Roxy Lee, Raul Quesada-Cabrera, Joe Willis, Asif Iqbal, Ivan P. P. Parkin, David O. O. Scanlon, Robert G. G. Palgrave

Summary: This study presents a method for quantifying crystallographic phases on a surface by fitting experimental photoemission spectra with density functional theory (DFT) models. The method was applied to map the anatase to rutile ratio across the surface of mixed-phase TiO2 thin films, and the results were correlated with photocatalytic activity measurements. The study demonstrates the potential of this method for large-scale functional and surface composition mapping in heterogeneous systems, and the unique insights provided by DFT-simulated spectra on the electronic structure origins of complex valence band spectral features.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Physical

Influence of Bi co-catalyst particle size on the photocatalytic activity of BiOI microflowers in Bi/BiOI junctions-A mechanistic study of charge carrier behaviour

Yuan Quan, Marcus H. N. YiO, Yuankai Li, Rupert J. Myers, Andreas Kafizas

Summary: In this study, the effect of Bi particle size in BiOI/Bi junctions on their photocatalytic function towards NO gas was investigated. The results showed that BiOI decorated with nano-sized Bi particles (BiOI/Bi NPs) displayed the highest photocatalytic activity, achieving NO and NOx conversion efficiencies of -33% and -11% under UVA light. In contrast, the BiOI microflowers decorated with micron-sized Bi particles (BiOI/Bi MPs) and pure BiOI samples showed lower activities. The enhanced performance of BiOI/Bi NPs was attributed to the interfacial contact between Bi and BiOI, promoting charge carrier separation and the formation of VO.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2023)

Article Multidisciplinary Sciences

Photo-induced enhanced Raman spectroscopy as a probe for photocatalytic surfaces

Sultan Ben-Jaber, Daniel Glass, Thomas Brick, Stefan A. Maier, Ivan P. Parkin, Emiliano Cortes, William J. Peveler, Raul Quesada-Cabrera

Summary: Photo-induced enhanced Raman spectroscopy (PIERS) is a highly sensitive surface-enhanced Raman spectroscopy (SERS) technique for detecting ultra-low concentrations of organic molecules. This study compares PIERS with Vo-induced SERS approaches to further confirm the role of Vo in PIERS and presents a proposed mechanism and discussion on using PIERS as a probe to explore photocatalytic materials.

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES (2023)

Article Nanoscience & Nanotechnology

Superhydrophobic Hexadecyltrimethoxysilane-Modified Fumed Silica Nanostructure/Poly(butyl methacrylate) Composite Thin Films via Aerosol-Assisted Deposition: Implications for Self-Cleaning Surfaces

Jiatong Huo, Cesar De Leon Reyes III, Julie Jalila Kalmoni, Seonghyeok Park, Gi Byoung Hwang, Sanjayan Sathasivam, Claire J. Carmalt

Summary: This study demonstrates the fabrication of fluorocarbon-free superhydrophobic coatings using a simple deposition method. The coatings consist of poly(butyl methacrylate) and nanostructured functionalized silica. Instrument measurements confirm the successful formation of the composite and its excellent contact and sliding angles, as well as moderate surface roughness. This research presents an environmentally friendly and efficient method for preparing PBMA-based superhydrophobic coatings.

ACS APPLIED NANO MATERIALS (2023)

Article Chemistry, Physical

Analysis of charge trapping and long lived hole generation in SrTiO3 photoanodes

Anna A. Wilson, Thomas P. Shalvey, Andreas Kafizas, Asim Mumtaz, James R. Durrant

Summary: This study investigates the charge carrier dynamics in SrTiO3 under applied bias and reveals the presence of Ti3+ defect states, which limit electron extraction and photocurrent. However, a long lifetime of photogenerated holes in SrTiO3 is observed even without applied bias, which is important for overcoming slow kinetics and hole accumulation in water oxidation reactions.

SUSTAINABLE ENERGY & FUELS (2023)

Article Chemistry, Multidisciplinary

The glass transition in the high-density amorphous Zn/Co-ZIF-4

Zijuan Du, Ang Qiao, Hemin Zhou, Zhencai Li, Wessel M. W. Winters, Jiexin Zhu, Guanjie He, Ivan P. Parkin, Haizheng Tao, Yuanzheng Yue

Summary: This study prepared high-density amorphous phases of bimetallic zeolitic imidazolate frameworks and measured their heat capacity to determine the glass transition temperature. The results showed a nonlinear effect of the molar ratio R on the glass transition temperature, indicating an increase in configurational freedom as R increases. The study also found a close correlation between configurational freedom and network connectivity.

CHEMICAL COMMUNICATIONS (2023)

Proceedings Paper Engineering, Civil

Monitoring Dendrite Formation in Aqueous Zinc Batteries with SH0 Guided Waves

Yifeng Zhang, Haobo Dong, Tianlei Wang, Guanjie He, Ivan P. Parkin, Frederic Cegla

Summary: This study demonstrates the sensitivity of guided ultrasonic waves to dendrite formation in batteries. By measuring the cyclical variations of wave velocity and attenuation, dendrite growth can be quantitatively tracked.

EUROPEAN WORKSHOP ON STRUCTURAL HEALTH MONITORING (EWSHM 2022), VOL 3 (2023)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)