4.6 Article

Drug-loaded nanoparticles and supramolecular nanotubes formed from a volatile microemulsion with bile salt derivatives

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 16, 页码 6016-6024

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp50258a

关键词

-

资金

  1. Israel Science Foundation
  2. Russell Berrie Nanotechnology Institute
  3. Sapienza University

向作者/读者索取更多资源

The main objective of this study was to form nanoparticles of a model hydrophobic drug, celecoxib, from a volatile microemulsion stabilized by a bile salt derivative. Nanoparticles were obtained by conversion of the microemulsion nanodroplets with the dissolved drug into solid nanometric particles. The use of bile salt derivatives as the surfactants for the formation of a microemulsion enabled significantly higher loading of the drug in both the microemulsion and nanoparticles, compared with the native bile salt. In addition, superior stability of the particles was achieved with the bile salt derivatives, and drug crystallization was inhibited. Interestingly, differences in particle stability and crystallization inhibition were observed between two bile salt derivatives differing only by one hydroxyl group on the bile salt backbone, indicating the delicate balance of interactions in the system. For one of the derivatives, upon dispersion of the nanoparticles in water, they spontaneously arranged into well-defined elongated nanometric tubules as detected and attested by cryo-TEM. It was found that the drug present in nanoparticles induces formation of the nanotubes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Condensed Supramolecular Helices: The Twisted Sisters of DNA

Guanqun Du, Alessandra Del Giudice, Viveka Alfredsson, Anna M. Carnerup, Kaizheng Zhu, Bo Nystrom, Yilin Wang, Luciano Galantini, Karin Schillen, Domagoj Belic

Summary: The condensation of DNA helices into hexagonally packed bundles and toroids is a fascinating example of functional organization of biological macromolecules at the nanoscale. Researchers have successfully reproduced a DNA-like condensation with supramolecular helices of small chiral molecules, suggesting a more general phenomenon. The study reveals unknown similarities between covalent and supramolecular non-covalent helical polyelectrolytes, potentially inspiring the construction of supramolecular versions of biological macromolecules in the future.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Medicine, Research & Experimental

Structurally Related Liposomes Containing N-Oxide Surfactants: Physicochemical Properties and Evaluation of Antimicrobial Activity in Combination with Therapeutically Available Antibiotics

Sara Battista, Pierangelo Bellio, Lorenza Fagnani, Elena Allegritti, Lisaurora Nazzicone, Luciano Galantini, Giuseppe Celenza, Luisa Giansanti

Summary: Although primarily investigated for drug delivery, liposomes can also exhibit pharmacological activity based on their composition. The molecular structure of liposome components affects their interaction with bacterial cells and antimicrobial properties. Liposomal formulations with N-oxide are effective against Gram-positive bacteria.

MOLECULAR PHARMACEUTICS (2022)

Article Chemistry, Multidisciplinary

Directing the Morphology, Packing, and Properties of Chiral Metal-Organic Frameworks by Cation Exchange

Hadar Nasi, Maria Chiara di Gregorio, Qiang Wen, Linda J. W. Shimon, Ifat Kaplan-Ashiri, Tatyana Bendikov, Gregory Leitus, Miri Kazes, Dan Oron, Michal Lahav, Milko E. van der Boom

Summary: Metal-organic frameworks based on tetrahedral pyridyl ligands can form a series of isostructural crystals with different metal ions and properties. By conducting cation exchanges, an iterative crystal-to-crystal conversion can be achieved, which is influenced by the stability of the resulting coordination nodes. The optical and magnetic properties of the crystals are controlled by the metal cation, and the crystals preserve their morphology, enabling quantitative comparison of their properties at both the ensemble and single-crystal level.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Environmental Sciences

Synthetic and Natural Surfactants for Potential Application in Mobilization of Organic Contaminants: Characterization and Batch Study

Neda Amanat, Berardino Barbati, Marta M. Rossi, Marco Bellagamba, Marco Buccolini, Luciano Galantini, Marco Petrangeli Papini

Summary: This study investigated the abilities of sugar-based synthetic surfactants and biosurfactants to dissolve and mobilize non-aqueous phase liquid components adsorbed on porous matrices. The results show that a synthetic surfactant from the APG family with a long fatty acid chain and a di-rhamnolipid biosurfactant with a shorter hydrophobic group offered the highest efficiency values.
Article Nanoscience & Nanotechnology

Quatsomes Formulated with L-Prolinol-Derived Surfactants as Antibacterial Nanocarriers of (+)-Usnic Acid with Antioxidant Activity

Sara Battista, Mariana Koeber, Pierangelo Bellio, Giuseppe Celenza, Luciano Galantini, Guillem Vargas-Nadal, Lorenza Fagnani, Jaume Veciana, Nora Ventosa, Luisa Giansanti

Summary: The newly developed nanovesicle system of the quatsome family shows noticeable antibacterial activity, demonstrating great potential for the treatment of bacterial infections and can also serve as nanocarriers of pharmaceutical actives.

ACS APPLIED NANO MATERIALS (2022)

Article Biochemical Research Methods

Unravelling the regulation pathway of photosynthetic AB-GAPDH

Roberto Marotta, Alessandra Del Giudice, Libero Gurrieri, Silvia Fanti, Paolo Swuec, Luciano Galantini, Giuseppe Falini, Paolo Trost, Simona Fermani, Francesca Sparla

Summary: GAPDH is a key enzyme in the Calvin-Benson cycle and is regulated differently in land plants. This study reveals the structural basis of its regulation and the existence of different oligomeric states. The C-terminal extension of the B subunits plays a crucial role in inhibiting enzyme activity by preventing substrate binding. The whole mechanism is controlled by pyridine nucleotides.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2022)

Article Chemistry, Multidisciplinary

Lignin Nanoparticles as Sustainable Photoprotective Carriers for Sunscreen Filters

Davide Piccinino, Eliana Capecchi, Valentina Trifero, Elisabetta Tomaino, Claudia Marconi, Alessandra Del Giudice, Luciano Galantini, Stefano Poponi, Alessandro Ruggieri, Raffaele Saladino

Summary: In this study, lignin nanoparticles were used as sustainable carriers and photostabilizers for common UV chemical filters. The stability of the compounds was significantly improved by encapsulation, and further enhanced by coencapsulation with hydroxytyrosol.

ACS OMEGA (2022)

Article Chemistry, Multidisciplinary

Noncovalent Bile Acid Oligomers as Facial Amphiphilic Antimicrobials

Liangchen Zhang, Yaxun Fan, Luciano Galantini, Karin Schillen, Alessandra Del Giudice, Guanqun Du, Yilin Wang

Summary: A class of noncovalent antimicrobials composed of bile acid oligomers and polyamines has been developed, showing strong antibacterial activity against methicillinand vancomycin-resistant Staphylococcus aureus without significant cytotoxicity and skin irritation.

LANGMUIR (2023)

Article Chemistry, Analytical

Disposable Voltammetric Immunosensor for D-Dimer Detection as Early Biomarker of Thromboembolic Disease and of COVID-19 Prognosis

Cristina Tortolini, Valeria Gigli, Antonio Angeloni, Luciano Galantini, Federico Tasca, Riccarda Antiochia

Summary: In this work, a simple electrochemical immunosensor was developed for the detection of D-dimer protein in human plasma samples. The immunosensor was constructed by drop-casting chitosan nanoparticles (CSNPs) as a biocompatible support, Protein A (PrA) to facilitate antibody orientation, and D-dimer antibody onto a carboxyl functionalized multi-walled carbon nanotubes screen printed electrode (MWCNTs-SPE). The immunosensor showed promising performance in antibody immobilization and specific D-dimer detection, with a linear range from 2 to 500 μg L-1, LOD of 0.6 μg L-1, and sensitivity of 1.3 μA L μg(-1) cm(-2). The stability and fast response time (5 s) were also reported. Moreover, the immunosensor demonstrated satisfactory results in detecting D-dimer in human plasma samples.

BIOSENSORS-BASEL (2023)

Article Biochemistry & Molecular Biology

Conformational Disorder Analysis of the Conditionally Disordered Protein CP12 from Arabidopsis thaliana in Its Different Redox States

Alessandra Del Giudice, Libero Gurrieri, Luciano Galantini, Silvia Fanti, Paolo Trost, Francesca Sparla, Simona Fermani

Summary: CP12 is a redox-dependent conditionally disordered protein found in oxygenic photosynthetic organisms. It acts as a light-dependent redox switch in regulating the metabolic phase of photosynthesis. A small angle X-ray scattering analysis confirmed the disordered nature of this protein and showed a decrease in size and conformational disorder upon oxidation. The presence of disulfide bonds in the oxidized form does not confer rigidity to the protein structure, highlighting the importance of recruiting partner proteins for its final folding.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2023)

Article Agriculture, Multidisciplinary

Interactions in Aqueous Mixtures of Cationic Hydroxyethyl Cellulose and Different Anionic Bile Salts

Julia Jianwei Tan, Natalie Gjerde, Alessandra Del Giudice, Kenneth D. Knudsen, Luciano Galantini, Guanqun Du, Karin Schillen, Sverre Arne Sande, Bo Nystrom

Summary: This study investigates the interactions between cationic hydroxyethyl cellulose (catHEC) and sodium deoxycholate (NaDC) or sodium cholate (NaC). It is found that there are strong interactions between catHEC and NaDC, while the interactions with NaC are weak. This difference may be due to the ability of NaDC to form more connections and entanglements.

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY (2023)

Review Biochemistry & Molecular Biology

Polymeric Wet-Strength Agents in the Paper Industry: An Overview of Mechanisms and Current Challenges

Iolanda Francolini, Luciano Galantini, Fernando Rea, Cristiano Di Cosimo, Pierpaolo Di Cosimo

Summary: Polymeric wet-strength agents are important additives used in the paper industry to improve paper products' mechanical properties when exposed to water. They enhance durability, strength, and dimensional stability. This review provides an overview of wet-strength agents, their mechanisms, challenges, and recent advances in developing sustainable and environmentally friendly agents. As demand for sustainable and durable paper products grows, the use of wet-strength agents is expected to increase.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2023)

Article Pharmacology & Pharmacy

Novel liposomal formulations for protection and delivery of levodopa: Structure-properties correlation

Elena Allegritti, Sara Battista, Maria Anna Maggi, Claudia Marconi, Luciano Galantini, Luisa Giansanti

Summary: This study focuses on the preparation and characterization of mixed liposomes for delivering levodopa and two natural substances to treat Parkinson's disease. The results show that the composition of the liposomes plays a significant role in the delivery of levodopa.

INTERNATIONAL JOURNAL OF PHARMACEUTICS (2023)

Article Chemistry, Multidisciplinary

Synthesis and Characterization of a Thermoresponsive Copolymer with an LCST-UCST-like Behavior and Exhibiting Crystallization

Natalie Solfrid Gjerde, Alessandra Del Giudice, Kaizheng Zhu, Kenneth D. Knudsen, Luciano Galantini, Karin Schillen, Bo Nystrom

Summary: In this study, a diblock copolymer called methoxy-poly(ethyleneglycol)-block-poly(epsilon-caprolactone) (MPEG-b-PCL) was synthesized with a unique block composition that allows it to exhibit both an upper critical solution temperature (UCST) and a lower critical solution temperature (LCST) in aqueous solutions. The UCST value was found to be 32°C upon heating and 23°C upon cooling, while the LCST remained unaffected. Various characterization techniques revealed that the solution consisted of spherical core-shell particles and rodlike objects at intermediate temperatures, cylindrical core-shell crystals at low temperatures, and large aggregation complexes at temperatures above 52°C. This work provides valuable insights into the complex interplay between UCST and LCST and the resulting structures formed in aqueous solutions of MPEG-b-PCL diblock copolymers.

ACS OMEGA (2023)

Article Chemistry, Physical

Complexation and organization of doxorubicin on polystyrene sulfonate chains: impacts on doxorubicin dimerization and quenching

Natalie Solfrid Gjerde, Alessandro Nicola Nardi, Cheng Giuseppe Chen, Paolo Di Gianvincenzo, Marco D'Abramo, Anita Scipioni, Luciano Galantini, Sergio E. Moya, Mauro Giustini

Summary: Anthracycline doxorubicin hydrochloride (DX), a positively charged fluorescent drug, can self-associate into non-fluorescent antiparallel dimers in water. When complexed with polyanion polystyrene sulfonate (PSS), the fluorescence of DX is quenched, but can be recovered with increased ionic strength. Molecular dynamics studies suggest a preferential orientation of DX into parallel dimers when interacting with PSS.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2022)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)