4.6 Article

Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 8, 页码 2654-2659

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp44213b

关键词

-

资金

  1. National Science Council [NSC 101-2218-E-007-009-MY3, NSC 101-2112-M-007-015-MY3, NSC 98-2221-E-007-104-MY3]
  2. Research Grants Council of Hong Kong SAR, China [CityU 101111]

向作者/读者索取更多资源

The influence of the catalyst materials on the electron transport behaviors of InAs nanowires (NWs) grown by a conventional vapor transport technique is investigated. Utilizing the NW field-effect transistor (FET) device structure, similar to 20% and similar to 80% of Au-catalyzed InAs NWs exhibit strong and weak gate dependence characteristics, respectively. In contrast, similar to 98% of Ni-catalyzed InAs NWs demonstrate a uniform n-type behavior with strong gate dependence, resulting in an average OFF current of similar to 10(-10) Aand a high ION/IOFF ratio of >10(4). The non-uniform device performance of Au-catalyzed NWs is mainly attributed to the non-stoichiometric composition of the NWs grown from a different segregation behavior as compared to the Ni case, which is further supported by the in situ TEM studies. These distinct electrical characteristics associated with different catalysts were further investigated by the first principles calculation. Moreover, top-gated and large-scale parallel-array FETs were fabricated with Ni-catalyzed NWs by contact printing and channel metallization techniques, which yield excellent electrical performance. The results shed light on the direct correlation of the device performance with the catalyst choice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Optics

Realizing the Switching of Optoelectronic Memory and Ultrafast Detector in Functionalized-Black Phosphorus/MoS2 Heterojunction

Chang Liu, Shuimei Ding, Qianlei Tian, Xitong Hong, Wanhan Su, Lin Tang, Liming Wang, Mingliang Zhang, Xingqiang Liu, Yawei Lv, Johnny C. Ho, Lei Liao, Xuming Zou

Summary: This study proposes a new device that combines optoelectronic memory and a detector, allowing for switchable functions. The device has long storage time, high on/off ratio, and excellent multi-bit storage in the memory mode. In the detector mode, it exhibits fast response, impressive responsivity, and self-driven broadband detection. Additionally, the device has the ability to quickly resolve polarization in the near-infrared range.

LASER & PHOTONICS REVIEWS (2023)

Article Chemistry, Multidisciplinary

Embedded Integration of Sb2Se3 Film by Low-Temperature Plasma-Assisted Chemical Vapor Reaction with Polycrystalline Si Transistor for High-Performance Flexible Visible-to-Near-Infrared Photodetector

Ying-Chun Shen, Cheng-Yu Lee, Hsing-Hsiang Wang, Ming-Hsuan Kao, Po-Cheng Hou, Yen-Yu Chen, Wen-Hsien Huang, Chang-Hong Shen, Yu-Lun Chueh

Summary: Researchers have developed a flexible photodetector based on a two-dimensional Sb2Se3 film, which exhibits high photosensing current and detection ranges from visible to near-infrared. The photodetector was fabricated using an efficient field-effect transistor platform and showed quick response times and broadband absorption.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Artificial Visual Systems With Tunable Photoconductivity Based on Organic Molecule-Nanowire Heterojunctions

Pengshan Xie, Xu Chen, Zixin Zeng, Wei Wang, You Meng, Zhengxun Lai, Quan Quan, Dengji Li, Weijun Wang, Xiuming Bu, Sai-Wing Tsang, SenPo Yip, Jia Sun, Johnny C. C. Ho

Summary: This paper proposes large-scale artificial synaptic device arrays based on organic molecule-nanowire heterojunctions with tunable photoconductivity, which can mimic and realize the functions of visual systems. These devices have tunable photoconductivity and response to multiple wavelengths, which can improve the recognition rate of neural networks.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Engineering, Environmental

Identifying the impact of Fe nanoparticles encapsulated by nitrogen-doped carbon to Fe single atom sites for boosting oxygen reduction reaction toward Zn-air batteries

Wen-Jun Niu, Ying-Yun Yan, Ru-Ji Li, Wei-Wei Zhao, Jiang-Lei Chen, Ming-Jin Liu, Bingni Gu, Wen-Wu Liu, Yu-Lun Chueh

Summary: In this proof-of-concept study, Fe nanoparticles encapsulated by nitrogen-doped carbon were evaluated and compared to Fe single atoms for boosting the catalytic activity of the oxygen reduction reaction (ORR) in Znair batteries. The Fe single atoms and Fe nanoparticles embedded in nitrogen-doped carbon exhibited excellent ORR performance with good stability and remarkable methanol tolerance. The strong interaction between the atomically dispersed Fe-Nx and adjacent Fe nanoparticles alters the electronic structure and enhances the electrocatalytic kinetics.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Physical

Tailored p-Orbital Delocalization by Diatomic Pt-Ce Induced Interlayer Spacing Engineering for Highly-Efficient Ammonia Electrosynthesis

Dong Chen, Shaoce Zhang, Di Yin, Wanpeng Li, Xiuming Bu, Quan Quan, Zhengxun Lai, Wei Wang, You Meng, Chuntai Liu, SenPo Yip, Fu-Rong Chen, Chunyi Zhi, Johnny C. C. Ho

Summary: This study reports a method to tailor the interlayer spacing of 2D SnS nanosheets, which enhances the chemical affinity towards NO3- and NO2- while inhibiting hydrogen generation. This promotes the rate-determining step in electrochemical nitrate reduction to ammonia and achieves excellent Faradaic efficiency and yield rate.

ADVANCED ENERGY MATERIALS (2023)

Editorial Material Chemistry, Multidisciplinary

Best Practices for Using AI When Writing Scientific Manuscripts

Jillian M. Buriak, Deji Akinwande, Natalie Artzi, C. Jeffrey Brinker, Cynthia Burrows, Warren C. W. Chan, Chunying Chen, Xiaodong Chen, Manish Chhowalla, Lifeng Chi, William Chueh, Cathleen M. Crudden, Dino Di Carlo, Sharon C. Glotzer, Mark C. Hersam, Dean Ho, Tony Y. Hu, Jiaxing Huang, Ali Javey, Prashant V. Kamat, Il-Doo Kim, Nicholas A. Kotov, T. Randall Lee, Young Hee Lee, Yan Li, Luis M. Liz-Marzan, Paul Mulvaney, Prineha Narang, Peter Nordlander, Rahmi Oklu, Wolfgang J. Parak, Andrey L. Rogach, Mathieu Salanne, Paolo Samori, Raymond E. Schaak, Kirk S. Schanze, Tsuyoshi Sekitani, Sara Skrabalak, Ajay K. Sood, Ilja K. Voets, Shu Wang, Shutao Wang, Andrew T. S. Wee, Jinhua Ye

ACS NANO (2023)

Review Chemistry, Multidisciplinary

Technology Roadmap for Flexible Sensors

Yifei Luo, Mohammad Reza Abidian, Jong-Hyun Ahn, Deji Akinwande, Anne M. Andrews, Markus Antonietti, Zhenan Bao, Magnus Berggren, Christopher A. Berkey, Christopher John Bettinger, Jun Chen, Peng Chen, Wenlong Cheng, Xu Cheng, Seon-Jin Choi, Alex Chortos, Canan Dagdeviren, Reinhold H. Dauskardt, Chong-an Di, Michael D. Dickey, Xiangfeng Duan, Antonio Facchetti, Zhiyong Fan, Yin Fang, Jianyou Feng, Xue Feng, Huajian Gao, Wei Gao, Xiwen Gong, Chuan Fei Guo, Xiaojun Guo, Martin C. Hartel, Zihan He, John S. Ho, Youfan Hu, Qiyao Huang, Yu Huang, Fengwei Huo, Muhammad M. Hussain, Ali Javey, Unyong Jeong, Chen Jiang, Xingyu Jiang, Jiheong Kang, Daniil Karnaushenko, Ali Khademhosseini, Dae-Hyeong Kim, Il-Doo Kim, Dmitry Kireev, Lingxuan Kong, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Lee, Fengyu Li, Jinxing Li, Cuiyuan Liang, Chwee Teck Lim, Yuanjing Lin, Darren J. Lipomi, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Liu, Xian Jun Loh, Nanshu Lu, Zhisheng Lv, Shlomo Magdassi, George G. Malliaras, Naoji Matsuhisa, Arokia Nathan, Simiao Niu, Jieming Pan, Changhyun Pang, Qibing Pei, Huisheng Peng, Dianpeng Qi, Huaying Ren, John A. Rogers, Aaron Rowe, Oliver G. Schmidt, Tsuyoshi Sekitani, Dae-Gyo Seo, Guozhen Shen, Xing Sheng, Qiongfeng Shi, Takao Someya, Yanlin Song, Eleni Stavrinidou, Meng Su, Xuemei Sun, Kuniharu Takei, Xiao-Ming Tao, Benjamin C. K. Tee, Aaron Voon-Yew Thean, Tran Quang Trung, Changjin Wan, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Wang, Paul S. Weiss, Hanqi Wen, Sheng Xu, Tailin Xu, Hongping Yan, Xuzhou Yan, Hui Yang, Le Yang, Shuaijian Yang, Lan Yin, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Yu, Evgeny Zamburg, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhang, Siyuan Zhao, Xuanhe Zhao, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zheng, Tao Zhou, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zhu, Guijin Zou, Xiaodong Chen

Summary: Humans are increasingly relying on flexible sensors to address challenges and improve quality of life in the digital and big data era. However, the market adoption of flexible sensors is still limited despite advancements in research. In this paper, we identify the bottlenecks hindering the maturation of flexible sensors and propose potential solutions to expedite their deployment and commercialization.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Emulating Neuromorphic and In-Memory Computing Utilizing Defect Engineering in 2D-Layered WSeOx and WSe2 Thin Films by Plasma-Assisted Selenization Process

Mayur Chaudhary, Tzu-Yi Yang, Chieh-Ting Chen, Po-Chien Lai, Yu-Chieh Hsu, Yu-Ren Peng, Ashish Kumar, Chih-Hao Lee, Yu-Lun Chueh

Summary: This study demonstrates that the diffusion of metal ions can be modulated by defects in the switching medium, leading to the confinement of metal filaments in a precise 1D channel. This filament confinement achieved through defect engineering enables two interchangeable switching modes and could potentially address speed, size, and energy issues in computing.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Selective Surface Engineering of Perovskite Microwire Arrays

Dengji Li, You Meng, Yuxuan Zhang, Pengshan Xie, Zixin Zeng, Wei Wang, Zhengxun Lai, Weijun Wang, Sai-Wing Tsang, Fei Wang, Chuntai Liu, Changyong Lan, SenPo Yip, Johnny C. Ho

Summary: The surface of low-dimensional perovskites is crucial for determining their intrinsic properties, and understanding their characteristics and the influence of specific surfaces is valuable for designing functional surface-engineered structures. Surface passivation can also be used to stabilize and optimize perovskite-based optoelectronics. In this study, cesium lead bromide (CsPbBr3) microwire parallel arrays with specific (100)-terminated crystal planes were fabricated, showing excellent photodetection performance and long-term environment stability (>3000 h). It was found that environmental oxygen can passivate Br-vacancy-related trap states on the (100) surface and create charge carrier nanochannels to enhance the (opto)electronic properties. The coupling effects between oxygen species and the specific terminated crystal planes of perovskites highlight the importance of surface engineering for designing and optimizing perovskite-based devices.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Flexible Vanadium Dioxide Photodetectors for Visible to Longwave Infrared Detection at Room Temperature ((press release associated article should be online on 21.06.2023))

Sivacarendran Balendhran, Mohammad Taha, Shifan Wang, Wei Yan, Naoki Higashitarumizu, Dingchen Wen, Nima Sefidmooye Azar, James Bullock, Paul Mulvaney, Ali Javey, Kenneth B. Crozier

Summary: Flexible optoelectronics is a rapidly growing field with a wide range of potential applications, but current devices have limitations in their spectral range. This study demonstrates flexible photodetectors using a VOx nanoparticle ink, with an extremely broad operating wavelength range of 0.4 to 20 μm. These devices show mechanical flexibility, wide spectral response, and ease of fabrication, making them highly desirable for various applications.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Electronic/Optoelectronic Memory Device Enabled by Tellurium-based 2D van der Waals Heterostructure for in-Sensor Reservoir Computing at the Optical Communication Band

Jiajia Zha, Shuhui Shi, Apoorva Chaturvedi, Haoxin Huang, Peng Yang, Yao Yao, Siyuan Li, Yunpeng Xia, Zhuomin Zhang, Wei Wang, Huide Wang, Shaocong Wang, Zhen Yuan, Zhengbao Yang, Qiyuan He, Huiling Tai, Edwin Hang Tong Teo, Hongyu Yu, Johnny C. Ho, Zhongrui Wang, Hua Zhang, Chaoliang Tan

Summary: In this work, an electronic/optoelectronic memory device based on tellurium-based 2D van der Waals heterostructure is reported. It features both long-term and short-term memory behaviors using electrical and optical pulses in the short-wave infrared (SWIR) region. This device enables a fully memristive in-sensor RC system for optical fiber signal processing.

ADVANCED MATERIALS (2023)

Article Chemistry, Physical

Contact Engineering of Halide Perovskites: Gold is Not Good Enough; Metalloid is Better

Zhengxun Lai, Yuxuan Zhang, You Meng, Xiuming Bu, Wei Wang, Pengshan Xie, Weijun Wang, Chuntai Liu, SenPo Yip, Johnny C. Ho

Summary: This study reports a new type of electrode, metalloid electrode, which is more stable than conventional noble metals as electrical contacts for halide perovskites. The degradation mechanism of noble metal electrodes compared to metalloid electrodes is investigated, and it is found that noble metals are prone to halogenation in halide perovskites, while metalloid electrodes remain intact after long-term storage. Furthermore, the long-time operation stability of perovskite devices with metalloid electrodes is higher than that of noble metals. First-principles calculations confirm the exceptional stability of metalloid electrodes.

SMALL METHODS (2023)

Article Chemistry, Physical

High-performance photodetectors based on two-dimensional perovskite crystals with alternating interlayer cations

Yezhan Li, Zhengxun Lai, You Meng, Wei Wang, Yuxuan Zhang, Xuwen Zhao, Di Yin, Weijun Wang, Pengshan Xie, Quan Quan, SenPo Yip, Johnny C. Ho

Summary: Organic-inorganic halide perovskite is a low-cost and solution-processable material with remarkable optoelectronic properties, making it an ideal candidate for high-performance photodetectors and reduce device costs.

JOURNAL OF MATERIOMICS (2023)

Article Materials Science, Multidisciplinary

Asymmetrically Contacted Tellurium Short-Wave Infrared Photodetector with Low Dark Current and High Sensitivity at Room Temperature

Huide Wang, Haoxin Huang, Jiajia Zha, Yunpeng Xia, Peng Yang, Yonghong Zeng, Yi Liu, Rui Cao, Bing Wang, Wei Wang, Long Zheng, Ye Chen, Qiyuan He, Xing Chen, Ke Jiang, Ja-Hon Lin, Zhe Shi, Johnny C. Ho, Han Zhang, Chaoliang Tan

Summary: A tellurium (Te)-based infrared photodetector is reported with a specifically designed asymmetric electrical contact area, achieving low dark current and high sensitivity at room temperature.

ADVANCED OPTICAL MATERIALS (2023)

Article Nanoscience & Nanotechnology

Design on Formation of Nickel Silicide by a Low-Temperature Pulsed Laser Annealing Method to Reduce Contact Resistance for CMOS Inverter and 6T-SRAM on a Wafer-Scale Flexible Substrate

Yu-Chieh Hsu, Yan-Yu Chen, Jia-Min Shieh, Wen-Hsien Huang, Chang-Hong Shen, Yu-Lun Chueh

Summary: A pulsed laser annealing method is used to directly synthesize nickel silicide (NiSi) as a contact material to improve the contact of electric devices. The integration of NiSi into different devices significantly improves their performance.

ADVANCED ELECTRONIC MATERIALS (2023)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)