4.6 Article

Structural tuning intra- versus inter-molecular proton transfer reaction in the excited state

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 14, 期 25, 页码 9006-9015

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp23938h

关键词

-

资金

  1. National Science Council of Taiwan

向作者/读者索取更多资源

A series of 2-pyridyl-pyrazole derivatives 1-4 possessing five-membered ring hydrogen bonding configuration are synthesized, the structural flexibility of which is strategically tuned to be in the order of 1 > 2 > 3 > 4. This system then serves as an ideal chemical model to investigate the correlation between excited-state intramolecular proton transfer (ESIPT) reaction and molecular skeleton motion associated with hydrogen bonds. The resulting luminescence data reveal that the rate of ESIPT decreases upon increasing the structural constraint. At sufficiently low concentration where negligible dimerization is observed, ESIPT takes place in 1 and 2 but is prohibited in 3 and 4, for which high geometry constraint is imposed. The results imply that certain structural bending motions associated with hydrogen bonding angle/ distance play a key role in ESIPT. This trend is also well supported by the DFT computational approach, in which the barrier associated with ESIPT is in the order of 1 < 2 < 3 < 4. Upon increasing the concentration in cyclohexane, except for 2, the rest of the title compounds undergo ground-state dimerization, from which the double proton transfer takes place in the excited state, resulting in a relatively blue shifted dimeric tautomer emission (cf. the monomer tautomer emission). The lack of dimerization in 2 is rationalized by substantial energy required to adjust the angle of hydrogen bond via twisting the propylene bridge prior to dimerization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据