4.6 Article

A refined cluster-in-molecule local correlation approach for predicting the relative energies of large systems

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 14, 期 21, 页码 7854-7862

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp23916g

关键词

-

资金

  1. National Natural Science Foundation of China [21073086, 20833003, 21103086]
  2. National Basic Research Program [2011CB808501]

向作者/读者索取更多资源

A refined cluster-in-molecule (CIM) method for local correlation calculations of large molecules is presented. In the present work, two new strategies are introduced to further improve the CIM approach: (1) Some medium-range electron correlation energies, which are neglected in the previous CIM approach, are taken into account. (2) A much simpler procedure using only a distance threshold is used to construct various clusters. To cover the medium-range correlation effect as much as possible, some two-atom-centered clusters are built, in addition to one-atom-centered clusters. Our test calculations at the second order perturbation theory (MP2) level show that the refined CIM method can recover about 99.9% of the conventional MP2 correlation energy using an appropriate distance threshold. The accuracy of the present CIM method is capable of providing reliable relative energies of medium-sized systems such as polyalanines with 10 residues, and water molecules with 50 water molecules. For polyalanines with up to 30 residues, we have demonstrated that the computational cost of the CIM-MP2 calculation increases linearly with the molecular size, but the required memory and disc-space do not need to increase for large systems. The improved CIM method has been used to compute the relative energy of ice-like (H2O)(96) clusters (with 2400 basis functions) and to predict the dimerization energy of a double-helical foldamer (with 2330 basis functions). The present CIM method is expected to be a practical local correlation method for describing the relative energies of large systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据