4.6 Article

Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 14, 期 17, 页码 6013-6020

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp40581d

关键词

-

资金

  1. Chevron-MIT Energy Initiative
  2. MIT Mechanical Engineering
  3. Doherty Chair in Ocean Utilization
  4. National Research Council (NRC)

向作者/读者索取更多资源

Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhesion to surfaces, ideally to a low enough level that hydrodynamic shear stresses can detach deposits and prevent plug formation. Systematic and quantitative studies of hydrate adhesion on smooth substrates with varying solid surface energies reveal a linear trend between hydrate adhesion strength and the practical work of adhesion (gamma(total)[1 + cos theta(rec)]) of a suitable probe liquid, that is, one with similar surface energy properties to those of the hydrate. A reduction in hydrate adhesion strength by more than a factor of four when compared to bare steel is achieved on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the practical work of adhesion is minimized. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and could lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Mechanics

Master curves for FENE-P fluids in steady shear flow

Sami Yamani, Gareth H. McKinley

Summary: The FENE-P dumbbell constitutive equation is commonly used for simulating viscoelastic shear flows and predicting macroscopic properties of dilute polymer solutions. By evaluating steady material functions, universal master curves for these functions, as well as the corresponding stress ratio, can be constructed, which helps in understanding the effects of finite extensibility of polymer chains.

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS (2023)

Article Mechanics

Gaborheometry: Applications of the discrete Gabor transform for time resolved oscillatory rheometry

Joshua David John Rathinaraj, Gareth H. McKinley

Summary: Oscillatory rheometric techniques are widely used to characterize the viscoelastic properties of complex fluids. However, conventional Fourier transforms for analyzing oscillatory data are limited in studying shear-induced microstructural changes in time-evolving materials. In this study, the Gabor transform is explored as a more advanced signal processing technique to extract time-resolved frequency information from oscillatory data. The Gabor transform enables accurate measurement of rapid changes in storage and loss modulus, extraction of characteristic thixotropic/aging time scale, and extraction of useful viscoelastic data from initial transient response. The resulting test protocol, Gaborheometry, reduces the number of required experiments and data postprocessing time significantly.

JOURNAL OF RHEOLOGY (2023)

Article Mechanics

Rheo-PIV of yield-stress fluids in a 3D-printed fractal vane-in-cup geometry

Esteban F. Medina-Banuelos, Benjamin M. Marin-Santibanez, Emad Chaparian, Crystal E. Owens, Gareth H. McKinley, Jose Perez-Gonzalez

Summary: It has been discovered that the steady fractal vane-in-cup (fVIC) flow of complex fluids using vanes with fractal cross sections can produce an almost axisymmetric flow field and rotation rate-independent effective radius, making it a reliable measurement tool for complex fluids. However, axial shearing/compression during the insertion of the rheometric tool in the sample also accelerates syneresis, leading to shear banding for Couette and fVIC flows.

JOURNAL OF RHEOLOGY (2023)

Article Polymer Science

Dual Origin of Viscoelasticity in Polymer-Carbon Black Hydrogels: A Rheometry and Electrical Spectroscopy Study

Gauthier Legrand, Sebastien Manneville, Gareth H. McKinley, Thibaut Divoux

Summary: Nanocomposite gels formed by mixing hydrophobic colloidal soot particles and a sodium salt of carboxymethylcellulose (CMC), known as cellulose gum, exhibit different mechanical behaviors depending on the relative content of the two components. At low CMC concentration, the gel shows electric conductivity and glassy-like viscoelastic behavior, while at higher CMC concentration, the gel becomes nonconductive and displays power-law viscoelastic behavior. The CMC plays a crucial role in the gel's viscoelastic properties. These findings provide valuable insights for designing nanocomposite gels based on hydrophobic interactions.

MACROMOLECULES (2023)

Article Physics, Multidisciplinary

The hidden hierarchical nature of soft particulate gels

Minaspi Bantawa, Bavand Keshavarz, Michela Geri, Mehdi Bouzid, Thibaut Divoux, Gareth H. McKinley, Emanuela Del Gado

Summary: Soft particulate gels consist of a small amount of particulate matter dispersed in a continuous fluid phase. The mechanical response and gel elasticity are determined by the particle volume fraction. However, the diverse range of functional dependencies reported experimentally has made it difficult to identify general scaling laws.

NATURE PHYSICS (2023)

Article Mechanics

Cavitation-induced microjets tuned by channels with alternating wettability patterns

Jelle J. J. Schoppink, Keerthana Mohan, Miguel A. A. Quetzeri-Santiago, Gareth McKinley, David Fernandez Rivas, Andrew K. K. Dickerson

Summary: By selectively coating hydrophobic strips on hydrophilic glass capillaries, the trajectory and characteristics of the microjet can be influenced and controlled.

PHYSICS OF FLUIDS (2023)

Article Materials Science, Biomaterials

3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications

Mario Milazzo, Vincent Fitzpatrick, Crystal E. Owens, Igor M. Carraretto, Gareth H. McKinley, David L. Kaplan, Markus J. Buehler

Summary: This study investigates the rheology, printability, and prosthetic mechanical properties of HA and HA-silk protein composites, highlighting the roles of composition and water content. The inclusion of silk improves the quality of printed items by reducing underextrusion and slumping. A printing map is constructed to guide the manufacturing of HA-based inks for biomedical applications requiring sub-millimetric features.

ACS BIOMATERIALS SCIENCE & ENGINEERING (2023)

Article Physics, Fluids & Plasmas

Spatiotemporal signatures of elastoinertial turbulence in viscoelastic planar jets

Sami Yamani, Yashasvi Raj, Tamer A. Zaki, Gareth H. McKinley, Irmgard Bischofberger

Summary: The interplay between viscoelasticity and inertia in dilute polymer solutions can lead to inertioelastic instabilities, resulting in elastoinertial turbulence (EIT) with distinct spatiotemporal features compared to Newtonian turbulence. Our study on a submerged planar jet of a dilute polymer solution in a quiescent water tank reveals that fluid elasticity has a nonmonotonic effect on the jet stability, creating two different regimes. At low levels of elasticity, an inertioelastic shear-layer instability emerges, destabilizing the flow and causing a turbulence transition closer to the nozzle. Increasing fluid elasticity merges the shear-layer instability into a bulk instability, partially stabilizing the flow and retarding the transition to turbulence. The fully turbulent state exhibits unique spatiotemporal features associated with EIT, characterized by self-similar evolution of jet spreading angle, entrainment, and coherent structures elongated in the streamwise direction. LDV measurements show a frequency spectrum with a -3 power-law exponent, different from Newtonian turbulence's well-known -5/3 exponent.

PHYSICAL REVIEW FLUIDS (2023)

Article Nanoscience & Nanotechnology

Soft Viscoelastic Magnetic Hydrogels from the In Situ Mineralization of Iron Oxide in Metal-Coordinate Polymer Networks

Jake Song, Sungjin Kim, Olivia Saouaf, Crystal Owens, Gareth H. McKinley, Niels Holten-Andersen

Summary: This study presents a novel design strategy for the synthesis of high-concentration soft magnetic hydrogels by in situ mineralization of iron oxide nanoparticles within polymer hydrogels. The resulting hydrogels exhibit softness, viscoelasticity, and strong magnetic actuation, making them suitable for biomedical applications.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Mechanics

Extensional rheometry of mobile fluids. Part II: Comparison between the uniaxial, planar, and biaxial extensional rheology of dilute polymer solutions using numerically optimized stagnation point microfluidic devices

Simon J. Haward, Stylianos Varchanis, Gareth H. McKinley, Manuel A. Alves, Amy Q. Shen

Summary: Part I presents a microfluidic device for generating near-homogeneous uniaxial and biaxial elongational flows. In Part II, this device is used to examine the extensional rheology of dilute polymer solutions compared to measurements made under planar extension. The extension rate and tensile stress difference generated in the fluid are measured using micro-particle image velocimetry and excess pressure drop measurements. The results show that at higher polymer concentrations, the experimental measurements deviate from the model predictions due to intermolecular interactions as the polymer chains unravel in the extensional flows.

JOURNAL OF RHEOLOGY (2023)

Article Mechanics

The rheology of saltwater taffy

San To Chan, Simon J. Haward, Eliot Fried, Gareth H. Mckinley

Summary: Saltwater taffy exhibits critical gel-like behavior and obeys time-temperature superposition principle. Its rheological properties can be described by the fractional Maxwell gel model. Minor ingredients like flavorings and colorings have little impact on the rheology of taffy.

PHYSICS OF FLUIDS (2023)

Article Multidisciplinary Sciences

Scientific machine learning for modeling and simulating complex fluids

Kyle R. Lennon, Gareth H. McKinley, James W. Swan

Summary: The development of data-driven models for complex fluid mechanics is essential for designing soft materials. This study presents a framework that allows rheologists to construct learnable models incorporating important physical information, without being dependent on specific experimental protocols or flow kinematics. These models enable rapid discovery of accurate constitutive equations from limited data and can describe more complex flows. The flexibility of this framework enables its application to a wide range of material systems and engineering problems.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2023)

Article Chemistry, Physical

Rod-climbing rheometry revisited

Rishabh V. More, Reid Patterson, Eugene Pashkovski, Gareth H. McKinley

Summary: By studying the rod-climbing effect, we can measure the elasticity of complex fluids, including factors such as rotation rate, fluid elasticity, surface tension, and inertia. Our results show that by combining small amplitude oscillatory shear flow measurements and commercial rheometer measurements, we can accurately measure the normal stress differences of complex fluids.

SOFT MATTER (2023)

Article Chemistry, Physical

Elastoviscoplasticity, hyperaging, and time-age-time-temperature superposition in aqueous dispersions of bentonite clay

Joshua David John Rathinaraj, Kyle R. Lennon, Miguel Gonzalez, Ashok Santra, James W. Swan, Gareth H. McKinley

Summary: Clay slurries are widely used in the oil exploration industry as drilling fluids. However, modeling the rheological behavior of these suspensions is challenging due to their thermal-driven evolution and non-linear viscoelastic properties. This study presents a new approach for modeling the linear viscoelastic response of aging bentonite suspensions, which effectively solves the problem by transforming the time domain and material domain. Experimental measurements support the validity of this model.

SOFT MATTER (2023)

Review Chemistry, Physical

Non-Maxwellian viscoelastic stress relaxations in soft matter

Jake Song, Niels Holten-Andersen, Gareth H. Mckinley

Summary: This study introduces the non-Maxwellian linear stress relaxation observed in soft matter systems and discusses its physical origins. Suitable mathematical models are proposed to describe this phenomenon. The research is important for understanding and modeling the mechanical relaxation of soft materials.

SOFT MATTER (2023)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)