4.6 Article

Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 36, 页码 16208-16219

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp20593e

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. NSERC CGS-D
  3. Alberta Ingenuity (now Alberta Innovates)

向作者/读者索取更多资源

Despite the practical need, no models exist to predict contact angles or wetting mode of surfactant solutions on rough hydrophobic or superhydrophobic surfaces. Using Gibbs' adsorption equation and a literature isotherm, a new model is constructed based on the Wenzel and Cassie equations. Experimental data for aqueous solutions of sodium dodecyl sulfate (SDS) contact angles on smooth Teflon surfaces are fit to estimate values for the adsorption coefficients in the model. Using these coefficients, model predictions for contact angles as a function of topological f (Cassie) and r (Wenzel) factors and SDS concentration are made for different intrinsic contact angles. The model is also used to design/tune surface responses. It is found that: (1) predictions compare favorably to data for SDS solutions on five superhydrophobic surfaces. Further, the model predictions can determine which wetting mode (Wenzel or Cassie) occurred in each experiment. The unpenetrated or partially penetrated Cassie mode was the most common, suggesting that surfactants inhibit the penetration of liquids into rough hydrophobic surfaces. (2) The Wenzel roughness factor, r, amplifies the effect of surfactant adsorption, leading to larger changes in contact angles and promoting total wetting. (3) The Cassie solid area fraction, f, attenuates the lowering of contact angles on rough surfaces. (4) The amplification/attenuation is understood to be due to increased/decreased solid-liquid contact-area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据