4.6 Article

Anisotropy in the interaction of ultracold dysprosium

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 42, 页码 19165-19170

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp21175g

关键词

-

资金

  1. Air Force Office of Scientific Research
  2. NSF [PHY-1005453]
  3. Division Of Physics [1005453] Funding Source: National Science Foundation

向作者/读者索取更多资源

The nature of the interaction between ultracold atoms with a large orbital and spin angular momentum has attracted considerable attention. It was suggested that such interactions can lead to the realization of exotic states of highly correlated matter. Here, we report on a theoretical study of the competing anisotropic dispersion, magnetic dipole-dipole, and electric quadrupole-quadrupole forces between two dysprosium atoms. Each dysprosium atom has an orbital angular momentum of L = 6 and a magnetic moment of mu = 10 mu(B). We show that the dispersion coefficients of the ground state adiabatic potentials lie between 1865 a.u. and 1890 a.u., creating a non-negligible anisotropy with a spread of 25 a.u. and that the electric quadrupole-quadrupole interaction is weak compared to the other interactions. We also find that for interatomic separations R < 50(a0) both the anisotropic dispersion and magnetic dipole-dipole potential are larger than the atomic Zeeman splittings for external magnetic fields of order 10 G to 100 G. At these separations the atomic angular momentum can be reoriented. We finish by describing two scattering models for these inelastic m-changing collisions. A universal scattering theory is used to model loss due to the anisotropy in the dispersion and a Born approximation is used to model losses from the magnetic dipole-dipole interaction for the Dy-164 isotope. These models find loss rates that are of the same order of magnitude as the experimental value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据