4.6 Article

Ground-state proton-transfer dynamics governed by configurational optimization

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 9, 页码 3730-3736

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp01977a

关键词

-

资金

  1. National Research Foundation of Korea by the Ministry of Education, Science, and Technology [2010-0015806, 2010-0001635]
  2. Seoul fellowship
  3. BK21 scholarship

向作者/读者索取更多资源

The ground-state proton transfer (GSPT) of 7-hydroxyquinoline along a hydrogen-bonded alcohol chain has been investigated in n-alkanes using time-resolved transient-absorption spectroscopy with variation of alcohols, media, isotopes, and temperatures. As a 7-hydroxyquinoline molecule associates with two alcohol molecules via hydrogen bonding to form a cyclic complex in a nonpolar aprotic medium, the intrinsic GSPT dynamics of the cyclic complex in a n-alkane has been observed directly without being interfered with by solvent association to form the cyclic complex. GSPT occurs concertedly without accumulating any reaction intermediate and yet asymmetrically with a rate-determining tunneling process. Both the rate constant and the kinetic isotope effect of GSPT increase rapidly with the proton-donating ability of the alcohol but decrease greatly with the molecular size of the alcohol. The reorganization of the hydrogen-bond bridge to form an optimal precursor configuration for efficient proton tunneling takes place prior to intrinsic GSPT, and configurational optimization becomes more important as the molecular size of the alcohol increases. Consequently, the larger contribution of configurational optimization to GSPT leads to the weaker asymmetric character of GSPT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据