4.6 Article

Proton transfer events in GFP

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 36, 页码 16295-16305

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp20387h

关键词

-

资金

  1. Human Frontier Science Program [RGP0038/2006]
  2. Netherlands Organization for Scientific Research through the Dutch Foundation for Earth and Life Sciences [812.08.001, 834.05.001, 805.47.123, 834.01.002]

向作者/读者索取更多资源

Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D2O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D2O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据