4.6 Article

Computational design of mixers and pumps for microfluidic systems, based on electrochemically-active conducting polymers

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 12, 页码 5450-5461

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp02659j

关键词

-

向作者/读者索取更多资源

We present a theoretical description of the propagation of composition waves along a strip of electrochemically-active conducting polymer, upon electrochemical stimulation. We develop an efficient solution of the electro-neutral Nernst-Plank equations in 2-D for electromigration and diffusional transport in the solution based on an extension of the methods of Scharfetter and Gummel [D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron Devices, 1969, ED16, 64-77.] and of Cohen and Cooley [H. Cohen and J. W. Cooley, Biophys. J., 1965, 5, 145-162.], and demonstrate important effects of the geometry of the cell. Under some circumstances, waves reflecting back from the end of the strip are predicted. We then demonstrate theoretically how such waves, associated as they are with expansion of the polymer, could be employed to enhance mixing or induce pumping in microfluidic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据