4.6 Article

Electronic structure of large disc-type donors and acceptors

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 12, 期 26, 页码 7184-7193

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b926999a

关键词

-

资金

  1. Transregio SFB TR 49 (Frankfurt, Mainz, Kaiserslautern)
  2. Graduate School of Excellence MAINZ
  3. Centre for Complex Materials (COMATT), Mainz

向作者/读者索取更多资源

Searching for new pi-conjugated charge-transfer systems, the electronic structure of a new acceptor-donor pair derived from coronene (C24H12) was investigated by ultraviolet photoelectron spectroscopy (UPS). The acceptor coronene-hexaone (C24H6O6, in the following abbreviated as COHON) and the donor hexamethoxycoronene (C30H24O6, abbreviated as HMC) were adsorbed as pure and mixed phases on gold substrates. At low coverage, COHON adsorption leads to the appearance of a charge-transfer induced interface state 1.75 eV below the Fermi energy. At multilayer coverage the photoemission intensity of the interface state drops and the valence spectrum of neutral COHON appears. The sample work function decreases from 5.3 eV (clean Au) to 4.8 eV (monolayer) followed by an increase to 5.6 eV (multilayer). The formation of a significant interface dipole due to charge-transfer at the metal-organic interface is possibly accompanied by a change in molecular orientation. HMC on Au exhibits no interface state and the sample work function decreases monotonically to ca. 4.8 eV (multilayer). The UPS spectra of individual donor and acceptor multilayers show good agreement with density functional theory modeling. In donor/acceptor mixed. films the photoemission signal of the donor (acceptor) shifts to higher (lower) binding energy. This trend is predicted by the calculation and is anticipated when charge is transferred from donor to acceptor. We propose that mixed. films of COHON and HMC constitute a weak charge-transfer system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Improving the Resistance of Molecularly Doped Polymer Semiconductor Layers to Solvent

Dominique Lungwitz, Ahmed E. Mansour, Yadong Zhang, Andreas Opitz, Stephen Barlow, Seth R. Marder, Norbert Koch

Summary: The ability to form multi-heterolayer (opto)electronic devices by solution processing of semiconducting polymer layers is of great interest, but it poses challenges for multilayer deposition. Two mechanisms, including doping-induced pre-aggregation and the use of a photo-reactive agent, are found to enhance the solvent resistance of solution-processed doped polymer layers while retaining the dopants. For molecularly doped poly(3-hexylthiophene-2,5-diyl) and poly[2,5-bis(3-tetradecyl-thiophene-2-yl)thieno(3,2-b)thiophene] layers, pre-aggregation plays a major role in enhancing solvent resistance, but limits the use of a cross-linking agent. However, by suppressing pre-aggregation, high resistance to solvent and retained electrical conductivity can be achieved using a tris(azide) cross-linking agent.

CHEMISTRY OF MATERIALS (2023)

Article Chemistry, Multidisciplinary

Significant enhancement of ferromagnetism above room temperature in epitaxial 2D van der Waals ferromagnet Fe5-δGeTe2/Bi2Te3 heterostructures

E. Georgopoulou-Kotsaki, P. Pappas, A. Lintzeris, P. Tsipas, S. Fragkos, A. Markou, C. Felser, E. Longo, M. Fanciulli, R. Mantovan, F. Mahfouzi, N. Kioussis, A. Dimoulas

Summary: The 2D van der Waals ferromagnetic metals FexGeTe2 with x = 3-5 have attracted significant attention. In this study, epitaxial Fe5-dGeTe2 (FGT) heterostructures were grown on insulating crystalline substrates using Molecular Beam Epitaxy (MBE). The addition of Bi2Te3 topological insulator (TI) to FGT films significantly enhanced the saturation magnetization and Curie temperature (Tc), with record values of 570 K obtained.

NANOSCALE (2023)

Article Physics, Multidisciplinary

Tunable topologically driven Fermi arc van Hove singularities

Daniel S. S. Sanchez, Tyler A. A. Cochran, Ilya Belopolski, Zi-Jia Cheng, Xian P. Yang, Yiyuan Liu, Tao Hou, Xitong Xu, Kaustuv Manna, Chandra Shekhar, Jia-Xin Yin, Horst Borrmann, Alla Chikina, Jonathan D. D. Denlinger, Vladimir N. N. Strocov, Weiwei Xie, Claudia Felser, Shuang Jia, Guoqing Chang, M. Zahid Hasan

Summary: The classification of electronic phases is based on two prominent paradigms: correlations and topology. Electron correlations lead to superconductivity and charge density waves, while the Berry phase gives rise to electronic topology. The combination of these two paradigms has prompted the search for electronic instabilities near the Fermi level of topological materials. This study identifies the electronic topology of chiral fermions as the driving force behind van Hove singularities that host electronic instabilities in the surface band structure.

NATURE PHYSICS (2023)

Article Materials Science, Multidisciplinary

Defect-Dependent Optoelectronic Properties at a Molecular p-dopant/Monolayer/Monolayer WS2 Interface

Jie Ma, Patrick Amsalem, Thorsten Schultz, Xiaomin Xu, Norbert Koch

Summary: Combining transition metal dichalcogenides (TMDCs) with molecular semiconductors allows for the formation of van der Waals heterostructures with unique optoelectronic properties. A strong p-type molecular dopant, F(6)TCNNQ, is used to create a van der Waals interface with a WS2 monolayer, resulting in no strong interaction or charge transfer. However, the presence of defects in the WS2 monolayer induces strong n-type doping and leads to pronounced charge transfer upon F(6)TCNNQ adsorption.

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2023)

Article Physics, Multidisciplinary

Visualizing Higher-Fold Topology in Chiral Crystals

Tyler A. Cochran, Ilya Belopolski, Kaustuv Manna, Mohammad Yahyavi, Liu Yiyuan, Daniel S. Sanchez, Cheng Zi-Jia, Xian P. Yang, Daniel Multer, Yin Jia-Xin, Horst Borrmann, Alla Chikina, Jonas A. Krieger, Jaime Sanchez-Barriga, Patrick Le Fevre, Francois Bertran, Vladimir N. Strocov, Jonathan D. Denlinger, Chang Tay-Rong, Jia Shuang, Claudia Felser, Hsin Lin, Chang Guoqing, M. Zahid Hasan

Summary: In this Letter, the authors discovered the higher-fold topology of a chiral crystal using a combination of fine-tuned chemical engineering and photoemission spectroscopy. They identified all bulk branches of a higher-fold chiral fermion and revealed a multigap bulk boundary correspondence. This demonstration of multigap electronic topology will drive future research on unconventional topological responses.

PHYSICAL REVIEW LETTERS (2023)

Article Multidisciplinary Sciences

Reply to: Low-frequency quantum oscillations in LaRhIn5: Dirac point or nodal line?

Chunyu Guo, A. Alexandradinata, Carsten Putzke, Amelia Estry, Teng Tu, Nitesh Kumar, Feng-Ren Fan, Shengnan Zhang, Quansheng Wu, Oleg V. Yazyev, Kent R. Shirer, Maja D. Bachmann, Hailin Peng, Eric D. Bauer, Filip Ronning, Yan Sun, Chandra Shekhar, Claudia Felser, Philip J. W. Moll

NATURE COMMUNICATIONS (2023)

Correction Multidisciplinary Sciences

Observation of a robust and active catalyst for hydrogen evolution under high current densities (vol 13, 7784, 2022 )

Yudi Zhang, Kathryn E. Arpino, Qun Yang, Naoki Kikugawa, Dmitry A. Sokolov, Clifford W. Hicks, Jian Liu, Claudia Felser, Guowei Li

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Anomalous Hall Conductivity and Nernst Effect of the Ideal Weyl Semimetallic Ferromagnet EuCd2As2

Subhajit Roychowdhury, Mengyu Yao, Kartik Samanta, Seokjin Bae, Dong Chen, Sailong Ju, Arjun Raghavan, Nitesh Kumar, Procopios Constantinou, Satya N. Guin, Nicholas Clark Plumb, Marisa Romanelli, Horst Borrmann, Maia G. Vergniory, Vladimir N. Strocov, Vidya Madhavan, Chandra Shekhar, Claudia Felser

Summary: In this study, the electronic structure of ferromagnetic EuCd2As2, predicted to be an ideal Weyl semimetal, is investigated using angle-resolved photoemission spectroscopy and scanning tunneling microscopy. The experimental results are in close agreement with the first principles calculations. Furthermore, anomalous Hall conductivity and Nernst effect are observed, resulting from the non-zero Berry curvature and the topological Hall effect arising from changes in the band structure caused by spin canting produced by magnetic fields. These findings provide insights into exotic quantum phenomena in inorganic topological materials with multiple pairs of Weyl nodes.

ADVANCED SCIENCE (2023)

Article Materials Science, Multidisciplinary

Work function and energy level alignment tuning at Ti3C2Tx MXene surfaces and interfaces using (metal-)organic donor/acceptor molecules

Thorsten Schultz, Peer Baermann, Elena Longhi, Rahul Meena, Yves Geerts, Yury Gogotsi, Stephen Barlow, Seth R. Marder, Tristan Petit, Norbert Koch

Summary: Two-dimensional MXenes, especially Ti(3)C(2)Tx, have promising properties for various applications. The work function of MXenes is crucial for energy level alignment, and methods to control the work function should be developed.

PHYSICAL REVIEW MATERIALS (2023)

Article Materials Science, Multidisciplinary

Probing Crystallinity and Grain Structure of 2D Materials and 2D-Like Van der Waals Heterostructures by Low-Voltage Electron Diffraction

Johannes Mueller, Max Heyl, Thorsten Schultz, Kristiane Elsner, Marcel Schloz, Steffen Ruehl, Helene Seiler, Norbert Koch, Emil J. W. List-Kratochvil, Christoph T. Koch

Summary: 4D scanning transmission electron microscopy (4D-STEM) is a powerful technique that can characterize electron-transparent samples with high spatial resolution. By rastering an electron beam over a sample area and acquiring transmission diffraction patterns, 4D-STEM can provide detailed information about the atomic structure, crystallinity, orientation, and other properties of the sample. It can be used in scanning electron microscopes (SEMs) to study 2D materials and vdWH, with their inherently thin thickness. A unique 4D-STEM-in-SEM system is applied to reveal the single crystallinity of MoS2 exfoliated with gold-mediation and determine the crystal orientation and coverage of both components in a C60/MoS2 vdWH.

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2023)

Article Physics, Multidisciplinary

High Resolution Polar Kerr Effect Studies of CsV3Sb5: Tests for Time-Reversal Symmetry Breaking below the Charge-Order Transition

David R. Saykin, Camron Farhang, Erik D. Kountz, Dong Chen, Brenden R. Ortiz, Chandra Shekhar, Claudia Felser, Stephen D. Wilson, Ronny Thomale, Jing Xia, Aharon Kapitulnik

Summary: This study reports high-resolution polar Kerr effect measurements on CsV3Sb5 single crystals to search for evidence of spontaneous time-reversal symmetry breaking below the charge-order transition. Utilizing two different versions of zero-area loop Sagnac interferometers operating at 1550 nm wavelength, the researchers found no observable Kerr effect within the noise floor limit. Simultaneous coherent reflection ratio measurements confirmed the sharpness of the charge-order transition, suggesting that time-reversal symmetry is unlikely to be broken in the charge ordered state in CsV3Sb5.

PHYSICAL REVIEW LETTERS (2023)

Article Chemistry, Multidisciplinary

Local Manipulation of the Energy Levels of 2D TMDCs on the Microscale Level via Microprinted Self-Assembled Monolayers

Sarah Gruetzmacher, Max Heyl, Marco Vittorio Nardi, Norbert Koch, Emil J. W. List-Kratochvil, Giovanni Ligorio

Summary: 2D transition metal dichalcogenides (TMDCs) are semiconductors with potential for optoelectronic applications, and their properties can be altered by chemically engineering the substrate surface. This study demonstrates local doping and adjustment of the electronic and optical properties of TMDCs (WSe2 and MoS2) by decorating the substrate with self-assembled monolayers (SAMs) with different molecular dipoles and dielectric constants. The interaction between SAMs and TMDCs leads to changes in the electronic band gap width, which can be predicted using the Schottky-Mott rule and knowledge of the dielectric screening effects. Understanding these effects allows for accurate prediction of TMDCs behavior for device design.

ADVANCED MATERIALS INTERFACES (2023)

Article Chemistry, Multidisciplinary

Charge Selective Contacts to Metal Halide Perovskites Studied with Photoelectron Spectroscopy: X-Ray, Ultraviolet, and Visible Light Induced Energy Level Realignment

Fengshuo Zu, Dongguen Shin, Emilio Gutierrez-Partida, Martin Stolterfoht, Patrick Amsalem, Norbert Koch

Summary: The electronic properties of metal halide perovskites (MHPs) are crucial for optimal optoelectronic devices, but photoelectron spectroscopy (PES) measurements can be complex due to charge selective junctions and high-energy photons causing energy level realignment. Bremsstrahlung from twin-anode lab-sources can induce sizable shifts in core levels, whereas monochromatized X-ray lab-sources have minimal effects. These findings aim to enhance the reliability of PES measurements for obtaining accurate MHP electronic property information.

ADVANCED MATERIALS INTERFACES (2023)

Article Materials Science, Multidisciplinary

Band structures of (NbSe4)3I and (TaSe4)3I: Reconciling transport, optics, and angle-resolved photoemission spectroscopy

Irian Sanchez-Ramirez, Maia G. Vergniory, Claudia Felser, Fernando de Juan

Summary: Among the quasi-one-dimensional transition metal tetrachalcogenides (MSe4)nI (M = Nb,Ta), the n = 3 compounds exhibit structural transitions with puzzling transport behavior instead of charge density waves. Recent discovery of a metallic polytype of (TaSe4)3I with coexisting ferromagnetism and superconductivity at low temperature challenges previous reports. In this study, ab initio and tight-binding band-structure calculations are used to explain the observed transport gaps and clarify the controversy regarding ARPES and optical conductivity experiments. The effect of small extrinsic hole doping and its implications for magnetism and superconductivity are also discussed.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Hierarchy of quasisymmetries and degeneracies in the CoSi family of chiral crystal materials

Lun-Hui Hu, Chunyu Guo, Yan Sun, Claudia Felser, Luis Elcoro, Philip J. W. Moll, Chao-Xing Liu, Andrei Bernevig

Summary: In this study, a hierarchical structure of quasisymmetries and their corresponding nodal structures in the chiral crystal material CoSi are revealed through two different approaches of perturbation expansions. Quasisymmetries are found to play a crucial role in the physical responses of the system and can protect the existence of nodal planes.

PHYSICAL REVIEW B (2023)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)