4.6 Article

A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 11, 期 48, 页码 11546-11556

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b914418h

关键词

-

资金

  1. ANR
  2. CINES, IDRIS-CNRS [0609]

向作者/读者索取更多资源

Carbon diffusion in transition metal nanoparticles is assumed to be a key factor in the catalyzed growth of carbon nanotubes (CNT). Aiming at designing more efficient catalysts, we have compared this carbon diffusion process in the near surface and in the bulk of Ni and Ni3Pd by means of density functional theory (DFT) calculations. Ni nanoparticles are indeed the most largely used catalysts and the alloying with Pd could modify and improve their properties. The alloy has the same crystal structure as pure Ni, with a slight lattice expansion due to the presence of palladium. For both systems, the subsurface octahedral site is the most stable adsorption site, but the thermodynamic trend favoring the penetration to the subsurface is larger on the alloy than on the Ni. As a result, in the conditions of temperature and pressure for nanotube growth, the population of the subsurface sites is a more exothermic processon the alloy. In addition, while on pure nickel the diffusion over the (111) surface is easy, on the alloy the vertical process leading the carbon to the subsurface is preferred. Palladium atoms have the double effect to expand the lattice parameter providing more adapted diffusion channels for the carbon and to create new adsorption sites less stable than the all-nickel ones. The results can be related to more selective formation of nanotubes on the alloy at low temperature, where Ni produces fibers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据