4.7 Article

CYP3A5 mediates bioactivation and cytotoxicity of tetrandrine

期刊

ARCHIVES OF TOXICOLOGY
卷 90, 期 7, 页码 1737-1748

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00204-015-1584-8

关键词

Tetrandrine; Bioactivation; CYP3A5; Quinone methide

资金

  1. National Natural Science Foundation of China [81373471, 81430086]
  2. Program for Zhejiang Leading Team of ST Innovation [2011R50014]

向作者/读者索取更多资源

Tetrandrine is a diaryl ether-type bisbenzylisoquinoline alkaloid and has shown multiple pharmacological activities. Our early work demonstrated that tetrandrine produced acute pulmonary toxicity and that tetrandrine was biotransformed to a quinone methide-derived metabolite mediated by CYP3A enzymes. The formation of the reactive intermediate is suggested to be responsible for the pulmonary toxicity induced by tetrandrine. In the present study, a WI-38-based Cyp3a5 transgenic cell line (WI-38/Cyp3a5) was established to investigate the role of CYP3A5 in tetrandrine-induced cytotoxicity. The transgenic cells were found to be more susceptible to the cytotoxicity of tetrandrine than the wild-type cells (WI-38/Vector). WI-38/Cyp3a5 cells showed higher cellular ROS levels, higher LDH activities in culture media, but lower cellular GSH contents than those observed in WI-38/Vector cells after exposure to tetrandrine. And severer apoptosis were observed in WI-38/Cyp3a5 cells after treatment with tetrandrine: WI-38/Cyp3a5 cells had higher proportion of early and late apoptotic cells, higher expression levels of caspase-3, but lower level of Bcl-2 than WI-38/Vector cells. This study provided strong evidence that CYP3A5 participated in tetrandrine-induced cytotoxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据