4.6 Article

Composite centrality: A natural scale for complex evolving networks

期刊

PHYSICA D-NONLINEAR PHENOMENA
卷 267, 期 -, 页码 58-67

出版社

ELSEVIER
DOI: 10.1016/j.physd.2013.08.005

关键词

Weighted directed network; Evolving network; Complex system; Unified scale; World trade web; World migration web

资金

  1. Hong Kong Research Grants Council through GRF Grant [CityU 1109/12E]

向作者/读者索取更多资源

We derive a composite centrality measure for general weighted and directed complex networks, based on measure standardisation and invariant statistical inheritance schemes. Different schemes generate different intermediate abstract measures providing additional information, while the composite centrality measure tends to the standard normal distribution. This offers a unified scale to measure node and edge centralities for complex evolving networks under a uniform framework. Considering two real-world cases of the world trade web and the world migration web, both during a time span of 40 years, we propose a standard set-up to demonstrate its remarkable normative power and accuracy. We illustrate the applicability of the proposed framework for large and arbitrary complex systems, as well as its limitations, through extensive numerical simulations. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Automation & Control Systems

A Robust Distributed Interval Observer for LTI Systems

Xiaoling Wang, Housheng Su, Fan Zhang, Guanrong Chen

Summary: This article investigates the state estimation problem of a continuous-time linear time-invariant system in the presence of unknown external disturbance and measurement noise. A robust distributed interval observer is designed, which consists of a group of sensors communicating through a directed graph. The communication, heterogeneity, and undetectability of the sensors impose stringent requirements on the observer construction. To address these restrictions, an internally positive representation from a single agent system is introduced. Numerical simulations are conducted to validate the theoretical results.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL (2023)

Article Automation & Control Systems

A Geometric Criterion for the Existence of Chaos Based on Periodic Orbits in Continuous-Time Autonomous Systems

Xu Zhang, Guanrong Chen

Summary: A new geometric criterion is developed to determine the existence of chaos in continuous-time autonomous systems in three-dimensional Euclidean spaces. This criterion differs from traditional methods as it does not rely on equilibrium points or the condition of transversal homoclinic or heteroclinic orbit of a Poincare map.

JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS (2023)

Article Computer Science, Artificial Intelligence

Design and Analysis of Multiscroll Memristive Hopfield Neural Network With Adjustable Memductance and Application to Image Encryption

Qiang Lai, Zhiqiang Wan, Hui Zhang, Guanrong Chen

Summary: This article presents a design of a new Hopfield neural network that can generate multiscroll attractors by utilizing a new memristor as a synapse in the network. The memristor is constructed with hyperbolic tangent functions and its parameters can effectively control the number of double scrolls in an attractor. Numerical analysis reveals amplitude control effects and quantitatively controllable multistability. Furthermore, a novel image encryption scheme based on the proposed memristive neural network is designed and evaluated, demonstrating good encryption performances.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2023)

Article Computer Science, Hardware & Architecture

Resistance Distances In Simplicial Networks

Mingzhe Zhu, Wanyue Xu, Zhongzhi Zhang, Haibin Kan, Guanrong Chen

Summary: In this paper, the resistance distances in networks with higher order interactions are studied, and exact formulas for various quantities related to resistance distances are derived. The results show that the average resistance distance tends to a q-dependent constant.

COMPUTER JOURNAL (2023)

Article Automation & Control Systems

Secure consensus of multi-agent systems under denial-of-service attacks

Guanghui Wen, Peijun Wang, Yuezu Lv, Guanrong Chen, Jialing Zhou

Summary: This paper studies the problem of secure consensus for multiple-input-multiple-output (MIMO) linear multi-agent systems (MASs) under denial-of-service (DoS) attacks and proposes corresponding control schemes and conditions. By designing an unknown input observer and using multiple Lyapunov functions, it is shown that secure consensus can be achieved under certain threshold conditions.

ASIAN JOURNAL OF CONTROL (2023)

Article Automation & Control Systems

From Chaos to Pseudorandomness: A Case Study on the 2-D Coupled Map Lattice

Yong Wang, Zhuo Liu, Leo Yu Zhang, Fabio Pareschi, Gianluca Setti, Guanrong Chen

Summary: This article performs a theoretical study on pseudorandom number generation using the well-studied 2-D coupled map lattice (2D CML). It proposes a method to extract uniformly distributed independent bits from the system orbits and demonstrates its effectiveness through simulation experiments.

IEEE TRANSACTIONS ON CYBERNETICS (2023)

Article Physics, Multidisciplinary

A new effective metric for dynamical robustness of directed networks

Jiashuo Sun, Linying Xiang, Guanrong Chen

Summary: In this article, the dynamical robustness of a directed complex network with additive noise is studied. The failure of a node in the network is modeled by injecting noise into the node. A new robustness metric is formulated to characterize the synchronization of the network to the additive noise under the framework of mean-square stochastic stability. It is found that the node dynamics plays a crucial role in the dynamical robustness of the directed network. Numerical simulations are provided for illustration and verification.

FRONTIERS IN PHYSICS (2023)

Article Automation & Control Systems

Innovation-based stealthy attack against distributed state estimation over sensor networks

Mengfei Niu, Guanghui Wen, Yuezu Lv, Guanrong Chen

Summary: This paper presents a new design of an innovation-based stealthy attack strategy against distributed state estimation over a sensor network. The optimal distributed MMSE estimator is developed by fusing interaction measurements from neighboring nodes in the absence of network attack. The tradeoff between attack stealthiness and attack effects is determined by proposing a stealthy attack framework embedded with an adjustable parameter.

AUTOMATICA (2023)

Article Automation & Control Systems

Controllability of Multilayer Snapback Networks

Jie-Ning Wu, Xiang Li, Guanrong Chen

Summary: This article examines the controllability of multi-input/multi-output linear time-invariant systems in a snapback interlayer coupling framework. It establishes necessary and sufficient conditions for the controllability of three-layer snapback networks and obtains controllability conditions for the superposition of these networks. These conditions are related to smaller scale factor networks and illustrate the impact of interlayer coupling frameworks, intralayer network topologies, node dynamics, inner interactions, and external control inputs on the controllability of snapback networks. The controllability conditions of three-layer snapback networks are also extended to the M-layer setting. Several examples are provided to illustrate the effectiveness of these controllability conditions.

IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS (2023)

Article Mathematics

Toward Zero-Determinant Strategies for Optimal Decision Making in Crowdsourcing Systems

Jiali Wang, Changbing Tang, Jianquan Lu, Guanrong Chen

Summary: In this paper, a decision optimization method based on zero-determinant (ZD) strategies is proposed to help workers in a crowdsourcing system make optimal decisions under incomplete information. The problem is formulated as an iterated game with incomplete information, and the optimal decision of workers in terms of ZD strategies is analyzed. Numerical simulations are conducted to demonstrate the performances of different strategies and the impact of parameters on the payoffs of workers.

MATHEMATICS (2023)

Article Automation & Control Systems

Multi-ASV Coordinated Tracking With Unknown Dynamics and Input Underactuation via Model-Reference Reinforcement Learning Control

Wenbo Hu, Fei Chen, Linying Xiang, Guanrong Chen

Summary: This article studies coordinated tracking of underactuated and uncertain autonomous surface vehicles (ASVs) via model-reference reinforcement learning control. It is demonstrated that the proposed algorithm has a better performance over baseline control and effectively improves the training efficiency over reinforcement learning.

IEEE TRANSACTIONS ON CYBERNETICS (2023)

Article Automation & Control Systems

Link-Information Augmented Twin Autoencoders for Network Denoising

Zhen Liu, Liangguang Pan, Guanrong Chen

Summary: In this article, a computational model called link-information augmented twin autoencoders is proposed to remove noisy links from observed network and recover the real network. Extensive experiments show that the proposed model outperforms other methods in network denoising and provides interpretable evidence to support its superiority.

IEEE TRANSACTIONS ON CYBERNETICS (2023)

Article Mathematics, Interdisciplinary Applications

Bifurcations, Exact Peakon, Periodic Peakons and Solitary Wave Solutions of the Cubic Camassa-Holm Type Equation

Yuqian Zhou, Guanrong Chen, Jibin Li

Summary: By applying the techniques from dynamical systems and singular traveling wave theory developed by Li and Chen [2007] to analyze the traveling wave system of the cubic Camassa-Holm type equation, it has been discovered that the bifurcation portraits of this equation exhibit all possible exact explicit bounded solutions (solitary wave solutions, periodic wave solutions, peakon as well as periodic peakons) under different parameter conditions. A total of 19 explicit exact parametric representations of the traveling wave system of the Camassa-Holm type equation are provided.

INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS (2023)

Article Computer Science, Artificial Intelligence

RobustECD: Enhancement of Network Structure for Robust Community Detection

Jiajun Zhou, Zhi Chen, Min Du, Lihong Chen, Shanqing Yu, Guanrong Chen, Qi Xuan

Summary: In this paper, robust community detection methods are proposed to improve the performance and robustness of community detection for real-world networks. By enhancing network structure through two generic algorithms, significant performance improvement is achieved for representative community detection algorithms. Additionally, the new methods also optimize the network structure and enhance robustness against adversarial attack.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (2023)

Article Mathematics, Applied

SOLITARY WAVES, PERIODIC PEAKONS AND COMPACTONS ON FOLIATIONS IN A HERTZ CHAIN MODEL

Zhensu Wen, Guanrong Chen

Summary: This paper uses the methodology of dynamical systems and singular traveling wave theory to prove the existence of all possible bounded solutions of the traveling wave system in the Hertz chain model under different parameter conditions. Furthermore, it obtains 23 exact explicit parametric representations for various types of traveling wave systems.

DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S (2023)

Article Mathematics, Applied

Latitudinal storm track shift in a reduced two-level model of the atmosphere

Melanie Kobras, Valerio Lucarini, Maarten H. P. Ambaum

Summary: In this study, a minimal dynamical system derived from the classical Phillips two-level model is introduced to investigate the interaction between eddies and mean flow. The study finds that the horizontal shape of the eddies can lead to three distinct dynamical regimes, and these regimes undergo transitions depending on the intensity of external baroclinic forcing. Additionally, the study provides insights into the continuous or discontinuous transitions of atmospheric properties between different regimes.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Robustness measurement of multiplex networks based on multiplex motifs

Shu-hong Xue, Yun-yun Yang, Biao Feng, Hai-long Yu, Li Wang

Summary: This research focuses on the robustness of multiplex networks and proposes a new index to measure their stability under malicious attacks. The effectiveness of this method is verified in real multiplex networks.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Measurements-based constrained control optimization in presence of uncertainties with application to the driver commands for high-speed trains

Julien Nespoulous, Guillaume Perrin, Christine Funfschilling, Christian Soize

Summary: This paper focuses on optimizing driver commands to limit energy consumption of trains under punctuality and security constraints. A four-step approach is proposed, involving simplified modeling, parameter identification, reformulation of the optimization problem, and using evolutionary algorithms. The challenge lies in integrating uncertainties into the optimization problem.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Effect of atmospheric turbulence on modulational instability in laser-pulse propagation

Alain Bourdier, Jean-Claude Diels, Hassen Ghalila, Olivier Delage

Summary: In this article, the influence of a turbulent atmosphere on the growth of modulational instability, which is the cause of multiple filamentation, is studied. It is found that considering the stochastic behavior of the refractive index leads to a decrease in the growth rate of this instability. Good qualitative agreement between analytical and numerical results is obtained.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Inverse scattering transform for the integrable fractional derivative nonlinear Schrödinger equation

Ling An, Liming Ling, Xiaoen Zhang

Summary: In this paper, an integrable fractional derivative nonlinear Schrodinger equation is proposed and a reconstruction formula of the solution is obtained by constructing an appropriate Riemann-Hilbert problem. The explicit fractional N-soliton solution and the rigorous verification of the fractional one-soliton solution are presented.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Kinetic models for systems of interacting agents with multiple microscopic states

Marzia Bisi, Nadia Loy

Summary: This paper proposes and investigates general kinetic models with transition probabilities that can describe the simultaneous change of multiple microscopic states of the interacting agents. The mathematical properties of the kinetic model are proved, and the quasi-invariant asymptotic regime is studied and compared with other models. Numerical tests are performed to demonstrate the time evolution of distribution functions and macroscopic fields.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

A general theory to estimate Information transfer in nonlinear systems

Carlos A. Pires, David Docquier, Stephane Vannitsem

Summary: This study presents a general theory for computing information transfers in nonlinear stochastic systems driven by deterministic forcings and additive and/or multiplicative noises. It extends the Liang-Kleeman framework of causality inference to nonlinear cases based on information transfer across system variables. The study introduces an effective method called the 'Causal Sensitivity Method' (CSM) for computing the rates of Shannon entropy transfer between selected causal and consequential variables. The CSM method is robust, cheaper, and less data-demanding than traditional methods, and it opens new perspectives on real-world applications.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Traveling waves in a quintic BBM equation under both distributed delay and weak backward diffusion

Feiting Fan, Minzhi Wei

Summary: This paper focuses on the existence of periodic and solitary waves for a quintic Benjamin-Bona-Mahony (BBM) equation with distributed delay and diffused perturbation. By transforming the corresponding traveling wave equation into a three-dimensional dynamical system and applying geometric singular perturbation theory, the existence of periodic and solitary waves are established. The uniqueness of periodic waves and the monotonicity of wave speed are also analyzed.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Nonlocal effects on a 1D generalized Ohta-Kawasaki model

Wangbo Luo, Yanxiang Zhao

Summary: We propose a generalized Ohta-Kawasaki model to study the nonlocal effect on pattern formation in binary systems with long-range interactions. In the 1D case, the model displays similar bubble patterns as the standard model, but Fourier analysis reveals that the optimal number of bubbles for the generalized model may have an upper bound.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Cluster distributions for dynamically defined point processes

Corentin Correia, Ana Cristina Moreira Freitas, Jorge Milhazes Freitas

Summary: The emergence of clustering of rare events is due to periodicity, where fast returns to target sets lead to a bulk of high observations. In this research, we explore the potential of a new mechanism to create clustering of rare events by linking observable functions to a finite number of points belonging to the same orbit. We show that with the right choice of system and observable, any given cluster size distribution can be obtained.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Diffusion in Allen-Cahn equation: Normal vs anomalous

Enyu Fan, Changpin Li

Summary: This paper numerically studies the Allen-Cahn equations with different kinds of time fractional derivatives and investigates the influences of time derivatives on the solutions of the considered models.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Evolving reliability assessment of systems using active learning-based surrogate modelling

Yuhang Zhu, Yinghao Zhao, Chaolin Song, Zeyu Wang

Summary: In this study, a novel approach called Time-Variant Reliability Updating (TVRU) is proposed, which integrates Kriging-based time-dependent reliability with parallel learning. This method enhances risk assessment in complex systems, showcasing exceptional efficiency and accuracy.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Heterogeneity of the attractor of the Lorenz '96 model: Lyapunov analysis, unstable periodic orbits, and shadowing properties

Chiara Cecilia Maiocchi, Valerio Lucarini, Andrey Gritsun, Yuzuru Sato

Summary: The predictability of weather and climate is influenced by the state-dependent nature of atmospheric systems. The presence of special atmospheric states, such as blockings, is associated with anomalous instability. Chaotic systems, like the attractor of the Lorenz '96 model, exhibit heterogeneity in their dynamical properties, including the number of unstable dimensions. The variability of unstable dimensions is linked to the presence of finite-time Lyapunov exponents that fluctuate around zero. These findings have implications for understanding the structural stability and behavior modeling of high-dimensional chaotic systems.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

Numerical study of fractional Camassa-Holm equations

Christian Klein, Goksu Oruc

Summary: A numerical study on the fractional Camassa-Holm equations is conducted to construct smooth solitary waves and investigate their stability. The long-time behavior of solutions for general localized initial data from the Schwartz class of rapidly decreasing functions is also studied. Additionally, the appearance of dispersive shock waves is explored.

PHYSICA D-NONLINEAR PHENOMENA (2024)

Article Mathematics, Applied

General fractional classical mechanics: Action principle, Euler-Lagrange equations and Noether theorem

Vasily E. Tarasov

Summary: This paper extends the standard action principle and the first Noether theorem to consider the general form of nonlocality in time and describes dissipative and non-Lagrangian nonlinear systems. The general fractional calculus is used to handle a wide class of nonlocalities in time compared to the usual fractional calculus. The nonlocality is described by a pair of operator kernels belonging to the Luchko set. The non-holonomic variation equations of the Sedov type are used to describe the motion equations of a wide class of dissipative and non-Lagrangian systems. Additionally, the equations of motion are considered not only with general fractional derivatives but also with general fractional integrals. An application example is presented.

PHYSICA D-NONLINEAR PHENOMENA (2024)