4.6 Article

Semi-passivity and synchronization of diffusively coupled neuronal oscillators

期刊

PHYSICA D-NONLINEAR PHENOMENA
卷 238, 期 21, 页码 2119-2128

出版社

ELSEVIER
DOI: 10.1016/j.physd.2009.08.007

关键词

Synchronization; Semi-passivity; Neuronal oscillators

向作者/读者索取更多资源

We discuss synchronization in networks of neuronal oscillators which are interconnected via diffusive coupling, i.e. linearly coupled via gap junctions. In particular, we present sufficient conditions for synchronization in these networks using the theory of semi-passive and passive systems. We show that the conductance based neuronal models of Hodgkin-Huxley, Morris-Lecar, and the popular reduced models of FitzHugh-Nagumo and Hindmarsh-Rose all satisfy a semi-passivity property, i.e. that is the state trajectories of such a model remain oscillatory but bounded provided that the supplied (electrical) energy is bounded. As a result, for a wide range of coupling configurations, networks of these oscillators are guaranteed to possess ultimately bounded solutions. Moreover, we demonstrate that when the coupling is strong enough the oscillators become synchronized. Our theoretical conclusions are confirmed by computer simulations with coupled Hindmarsh-Rose and Morris-Lecar oscillators. Finally we discuss possible instabilities in networks of oscillators induced by the diffusive coupling. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据