4.6 Article

Can spontaneous cell movements be modelled as Levy walks?

期刊

出版社

ELSEVIER
DOI: 10.1016/j.physa.2009.09.027

关键词

Cell motility; Levy walks; Heavy tails

资金

  1. Biotechnology and Biological Sciences Research Council

向作者/读者索取更多资源

Spontaneous cell movement is a random motion that takes place in the absence of external guiding stimuli. The spontaneous movements of HaCaT and NHDF cells (cells of the epidermis) are well represented as continuous Markovian processes driven by multiplicative noise [D. Selmeczi, S. Mosler, P.H. Hagedorn, N.B. Larsen, H. Flyvbjerg, Biophysical journal 89 (2005) 912]. Model components are, however, ad hoc as they are inspired by fits to experimental data. As a consequence, model agreement with experimental data does not add much to Our understanding of spontaneous movements of these cells beyond demonstrating that they can be modelled phenomenologically. Here it is noted that a slight re-parameterization and re-interpretation of the driving noise leads to the model of Lubashevsky et al. (2009) [I. Lubashevsky, R. Friedrich, A. Heuer, Physical Review E 79 (2009) 011110] that realises Levy walks as Markovian stochastic processes. This brings forth new biological insight as Levy walks are advantageous when searching in the absence of external stimuli and without knowledge of the target distribution, as may be the case with cells of the epidermis that form new tissue by locating and then attaching on to one another. The Hinggi-Klimontovich interpretation of the driving noise in the model of Lubashevsky et al. (2009) and Cauchy distributions of predicted velocities do, however, appear problematic, even unphysical. Here it is shown that these are perceived rather than actual difficulties. Intermittent stop-start motions of the kind displayed by some cells and protozoan are found to underlie the formulation of the model of Lubashevsky et al. (2009) and the velocities of starved Dictyostelium discoideum (a unicellular organism) are found to be Cauchy distributed to a good approximation. It is therefore suggested that the model of Lubashevsky et al. (2009) can describe the spontaneous movements of some cells, and that some cells have spontaneous movement patterns that can be approximated by Levy walks, as first proposed by Schuster and Levandowsky (1996) [F.L. Schuster, M. Levandowsky, Journal of Eukaryotic Microbiology 43 (1996) 150]. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据