4.2 Article

Susceptibility of spores of different ploidy levels from Antarctic Gigartina skottsbergii (Gigartinales, Rhodophyta) to ultraviolet radiation

期刊

PHYCOLOGIA
卷 47, 期 4, 页码 361-370

出版社

TAYLOR & FRANCIS LTD
DOI: 10.2216/PH07-84.1

关键词

carpospore; cyclobutane pyrimidine dimer; DNA damage repair; life history; mycosporine-like amino acids; optimum quantum yield; P-E curve; tetraspore

向作者/读者索取更多资源

Haploid tetraspores and diploid carpospores from Antarctic Gigartina skottsbergii were exposed in the laboratory to photosynthetically active radiation (400-700 nm = P), P + ultraviolet (UV)-A radiation (320-700 nm = PA) and P + UV-A + UV-B radiation (280-700 nm = PAB). Photosynthetic performance, DNA damage and repair, spore mortality, and an initial characterization of the UV-absorbing mycosporine-like amino acids (MAAs) were studied. Rapid photosynthesis vs irradiance (E) curves of freshly released spores showed that both tetraspores and carpospores were low-light adapted (E-k = 44 +/- 2 and 54 +/- 2 mu mol photons m(-2) s(-1), respectively). The light-harvesting and photosynthetic conversion efficiencies were similar (alpha = 0.13), whereas photosynthetic capacity in terms of optimum quantum yield (F-v/F-m) and relative electron transport rate (rETR(max)) were significantly higher in carpospores. Photoinhibition and recovery of photosynthesis were not significantly different between spore ploidy but were significantly affected by radiation and exposure time treatments. Accumulation of DNA damage was UV-B dose dependent and significantly higher in tetraspores than in carpospores. After 2 days postcultivation, DNA lesions were completely repaired in spores exposed to UV-B dose less than 1.2 X 10(4) J m(-2). The dynamic recovery of photosynthetic capacity as well as effective DNA repair mechanism contributed to the relatively low spore mortality (4-14%). A substantial amount of UV-screening MAAs shinorine and palythine were observed for the first time in spores of Gigartinales. This study on stress and physiological characterization of seaweed propagules is important to understand recruitment dynamics and life history phase dominance in the field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据