4.4 Article

Alpha-retinals as rhodopsin chromophores -: Preference for the 9-Z configuration and partial agonist activity

期刊

PHOTOCHEMISTRY AND PHOTOBIOLOGY
卷 84, 期 4, 页码 889-894

出版社

WILEY
DOI: 10.1111/j.1751-1097.2008.00321.x

关键词

-

向作者/读者索取更多资源

The visual pigment rhodopsin, the photosensory element of the rod photoreceptor cell in the vertebrate retina, shows in combination with an endogenous ligand, 11-Z retinal, an astonishing photochemical performance. It exhibits an unprecedented quantum yield (0.67) in a highly defined and ultrafast photoisomerization process. This triggers the conformational changes leading to the active state Meta(rhodopsin) II. Retinal is covalently bound to Lys-296 of the protein opsin in a protonated Schiff base. The resulting positive charge delocalization over the terminal part of the polyene chain of retinal creates a conjugation defect that upon photoexcitation moves to the opposite end of the polyene. Shortening the polyene as in 4,5-dehydro,5,6-dihydro (alpha), 5,6-dihydro or 7,8-dihydro-analogs might facilitate photoisomerization of a 9-Z and a 11-Z bond. Here we describe pigment analogs generated with bovine opsin and 11-Z or 9-Z 4,5-dehydro,5,6-dihydro-retinal that were further characterized by UV-Vis and FTIR spectroscopy. The preference of opsin for native 11-Z retinal over the 9-Z isomer is reversed in 4,5-dehydro,5,6-dihydro-retinal. 9-Z 4,5-dehydro,5,6-dihydro-retinal readily generated a photosensitive pigment. This modification has no effect on the quantum yield, but affects the Batho <-> blueshifted intermediate (BSI) equilibrium and leads to a strong decrease in the G-protein activation rate because of a downshift of the pK(a) of the Meta I <-> Meta II equilibrium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据