4.5 Article

Evolution of wealth in a non-conservative economy driven by local Nash equilibria

出版社

ROYAL SOC
DOI: 10.1098/rsta.2013.0394

关键词

multi-agent market models; price strategies; mean field games; Pareto distribution; Fokker-Planck equation; general collision invariants

资金

  1. KI-Net NSF RNMS [1107444, 1107291]
  2. PEPS CNRS 'HuMaIn'

向作者/读者索取更多资源

We develop a model for the evolution of wealth in a non-conservative economic environment, extending a theory developed in Degond et al. (2014 J. Stat. Phys. 154, 751-780 (doi:10.1007/s10955-013-0888-4)). The model considers a system of rational agents interacting in a game-theoretical framework. This evolution drives the dynamics of the agents in both wealth and economic configuration variables. The cost function is chosen to represent a risk-averse strategy of each agent. That is, the agent is more likely to interact with the market, the more predictable the market, and therefore the smaller its individual risk. This yields a kinetic equation for an effective single particle agent density with a Nash equilibrium serving as the local thermodynamic equilibrium. We consider a regime of scale separation where the large-scale dynamics is given by a hydrodynamic closure with this local equilibrium. A class of generalized collision invariants is developed to overcome the difficulty of the non-conservative property in the hydrodynamic closure derivation of the large-scale dynamics for the evolution of wealth distribution. The result is a system of gas dynamics-type equations for the density and average wealth of the agents on large scales. We recover the inverse Gamma distribution, which has been previously considered in the literature, as a local equilibrium for particular choices of the cost function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据