4.4 Article Proceedings Paper

Numerical implementation of a 3D continuum theory of dislocation dynamics and application to micro-bending

期刊

PHILOSOPHICAL MAGAZINE
卷 90, 期 27-28, 页码 3697-3728

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14786430903236073

关键词

dislocations dynamics; continuum theory of dislocation; dislocation density; micro-bending

向作者/读者索取更多资源

Crystal plasticity is governed by the motion of lattice dislocations. Although continuum theories of static dislocation assemblies date back to the 1950s, the line-like character of these defects posed serious problems for the development of a continuum theory of plasticity which is based on the averaged dynamics of dislocation systems. Only recently the geometrical problem of performing meaningful averages over systems of moving, oriented lines has been solved. Such averaging leads to the definition of a dislocation density tensor of second order along with its evolution equation. This tensor can be envisaged as the analogue of the classical dislocation density tensor in an extended space which includes the line orientation as an independent variable. In the current work, we discuss the numerical implementation of a continuum theory of dislocation evolution that is based on this dislocation density measure and apply this to some simple benchmark problems as well as to plane-strain micro-bending.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据