4.4 Article

Interactions between lattice dislocations and twin boundaries in tungsten: A comparative atomistic simulation study

期刊

PHILOSOPHICAL MAGAZINE
卷 89, 期 34-36, 页码 3179-3194

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14786430903246346

关键词

dislocation; grain boundaries; tungsten; atomistic simulations

资金

  1. German Science Foundation (DFG) [GU 367/25, MR 22/5-1]

向作者/读者索取更多资源

Plastic deformation of polycrystalline materials is largely controlled by the interaction between lattice dislocations and grain boundaries. The atomistic details of these interactions are, however, difficult to discern even by advanced high-resolution electron microscopy methods. In this paper, we study several interactions of screw and edge dislocations with two symmetric tilt grain boundaries in the body-centred cubic metal tungsten by atomistic simulations. Two distinct models of interatomic interactions are applied: an empirical Finnis-Sinclair potential and a bond-order potential, which is based on quantum mechanical principles within the tight-binding electronic-structure theory. Our study shows that the outcome of the interactions is sensitive to the employed interatomic potential. The origins of the deviating behaviour can be traced to differences in the description of atomic bonding by the two potentials. Independent of the employed interatomic potential, the simulations reveal that simple empirical criteria for dislocation transmission, which are based on geometry and stress arguments only, do not apply in general. Instead, in most cases, processes occurring at the atomic level play a decisive role in the determination of the underlying mechanisms of dislocations/grain-boundary interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据