4.4 Article

Angiotensin-(1-7) Induces Peripheral Antinociception through Mas Receptor Activation in an Opioid-Independent Pathway

期刊

PHARMACOLOGY
卷 89, 期 3-4, 页码 137-144

出版社

KARGER
DOI: 10.1159/000336340

关键词

Angiotensin; Mas receptor; A-779; Peripheral antinociception; Prostaglandin; Immunofluorescence

资金

  1. Conselho Nacional de Pesquisa
  2. Conselho Nacional de Pesquisa-PRONEX
  3. Fundacao de Amparo a Pesquisa de Minas Gerais

向作者/读者索取更多资源

The G protein-coupled receptor Mas was recently described as an angiotensin-(1-7) [Ang-(1-7)] receptor. In the present study, we demonstrate an antinociceptive effect of Ang-(17) for the first time. Additionally, we evaluated the anatomical localization of Mas in the dorsal root ganglia using immunofluorescence. This is the first evidence indicating that this receptor is present in sensitive neurons. The antinociceptive effect was demonstrated using the rat paw pressure test. For this test, sensitivity is increased by intraplantar injection of prostaglandin E-2. Ang-(1-7) administered locally into the right hind paw elicited a dose-dependent antinociceptive effect. Because the higher dose of Ang-(1-7) did not produce an effect when injected into the contralateral paw, this effect was considered local. The specific antagonist for the Mas receptor, A-779, inhibited the peripheral antinociception induced by exposure to 4 mu g/paw Ang-(1-7) in a dose-dependent manner. The highest dose completely reversed the antinociceptive effect induced by Ang-(1-7), suggesting that the Mas receptor is an obligatory component in this process and that other angiotensin receptors may not be involved. When injected alone, the antagonist was unable to induce hyperalgesia or antinociception. Alternatively, naloxone was unable to inhibit the antinociceptive effect induced by Ang-(1-7), suggesting that endogenous opioid peptides may not be involved in this response. These data provide the first anatomical basis for the physiological role of Ang-(1-7) in the modulation of pain perception via Mas receptor activation in an opioid-independent pathway. Taken together, these results provide new perspectives for the development of a new class of analgesic drugs. Copyright (C) 2012 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据