4.4 Article

Calcium-dependent inhibition of T-type calcium channels by TRPV1 activation in rat sensory neurons

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00424-011-1023-5

关键词

TRPV1; Capsaicin; T-type Cav3,2 channels; Nociceptive DRG neurons

资金

  1. MIUR [2007SYRBBH_001]
  2. NIS

向作者/读者索取更多资源

We studied the inhibitory effects of transient receptor potential vanilloid-1 (TRPV1) activation by capsaicin on low-voltage-activated (LVA, T-type) Ca2+ channel and high-voltage-activated (HVA; L, N, P/Q, R) currents in rat DRG sensory neurons, as a potential mechanism underlying capsaicin-induced analgesia. T-type and HVA currents were elicited in whole-cell clamped DRG neurons using ramp commands applied before and after 30-s exposures to 1 mu M capsaicin. T-type currents were estimated at the first peak of the I-V characteristics and HVA at the second peak, occurring at more positive potentials. Small and medium-sized DRG neurons responded to capsaicin producing transient inward currents of variable amplitudes, mainly carried by Ca2+. In those cells responding to capsaicin with a large Ca2+ influx (59% of the total), a marked inhibition of both T-type and HVA Ca2+ currents was observed. The percentage of T-type and HVA channel inhibition was prevented by replacing Ca2+ with Ba2+ during capsaicin application or applying high doses of intracellular BAPTA (20 mM), suggesting that TRPV1-mediated inhibition of T-type and HVA channels is Ca2+-dependent and likely confined to membrane nano-microdomains. Our data are consistent with the idea that TRPV1-induced analgesia may derive from indirect inhibition of both T-type and HVA channels which, in turn, would reduce the threshold of nociceptive signals generation (T-type channel inhibition) and nociceptive synaptic transmission (HVA-channels inhibition).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据