4.4 Article

The role of mitochondrial uncoupling proteins in lifespan

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00424-009-0729-0

关键词

Aging; Mitochondria; Free radical; Oxidative phosphorylation; ATP

资金

  1. Conselho Nacional de Pesquisa (CNPq), Brazil
  2. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK060711] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The increased longevity in modern societies raised the attention to biological interventions that could promote a healthy aging. Mitochondria are main organelles involved in the production of adenosine triphosphate (ATP), the energetic substrate for cellular biochemical reactions. The production of ATP occurs through the oxidative phosphorylation of intermediate substrates derived from the breakdown of lipids, sugars, and proteins. This process is coupled to production of oxygen reactive species (ROS) that in excess will have a deleterious role in cellular function. The damage promoted by ROS has been emphasized as one of the main processes involved in senescence. In the last decades, the discovery of specialized proteins in the mitochondrial inner membrane that promote the uncoupling of proton flux (named uncoupling proteins-UCPs) from the ATP synthase shed light on possible mechanisms implicated in the buffering of ROS and consequently in the process of aging. UCPs are responsible for a physiological uncoupling that leads to decrease in ROS production inside the mitochondria. Thus, induction of uncoupling through UCPs could decrease the cellular damage that occurs during aging due to excess of ROS. This review will focus on the evidence supporting these mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据