4.5 Article

Genome-wide scans reveal cryptic population structure in a dry-adapted eucalypt

期刊

TREE GENETICS & GENOMES
卷 11, 期 3, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11295-015-0864-z

关键词

Ecotypic variation; Soil phosphorus; Eucalyptus; Outlier analysis; DArTseq; Population genetics

资金

  1. Australian National Climate Change Adaptation Research Facility [TB11 03]
  2. Great Western Woodlands Supersite of Australia's Terrestrial Ecosystem Research Network
  3. ARC [DP130104220]

向作者/读者索取更多资源

Genome-wide DArTseq scans of 268 individuals of Eucalyptus salubris, distributed along an aridity gradient in southwestern Australia, revealed cryptic population structure that appears to signal hitherto unappreciated ecotypic differentiation and barriers to gene flow. Genome-wide scans were undertaken on 30 wild-sampled individuals from each of nine populations; 10 individuals per population were measured for habit and functional traits. DArTseq generated 16,122 high-quality markers, of which 56.3 % located to E. grandis chromosomes. Genetic affinities of the nine populations were only weakly correlated with geographic distances. Rather, populations appeared to form two distinct molecular lineages that maintained their distinctiveness in an area of geographic overlap. Twenty-four outlier markers signalled divergent selection and differentiation of the two putative lineages. Populations from the two lineages were phenotypically differentiated in leaf thickness, specific leaf area (SLA) and leaf nitrogen per unit mass (Nmass). The more northerly lineage (with thinner leaves) occurred in hotter, drier conditions with higher radiation. Populations of the more southerly lineage occurred on soils that were relatively low in phosphorus; the trees had thicker leaves, lower SLA and lower leaf Nmass, consistent with general responses to low nutrient levels. While historic isolation and drift may have contributed to the cryptic population structure observed, there is evidence of ecotypic adaptation, which may provide an exogenous barrier to gene flow. This study highlights the power of new molecular technologies to provide novel insights into the genetic architecture of wild populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据