4.5 Article

Thick boundaries in binary space and their influence on nearest-neighbor search

期刊

PATTERN RECOGNITION LETTERS
卷 33, 期 16, 页码 2173-2180

出版社

ELSEVIER
DOI: 10.1016/j.patrec.2012.08.006

关键词

Approximate nearest neighbor search; Binary vectors; Locality sensitive hashing; Hierarchical k-means

向作者/读者索取更多资源

Binary descriptors allow faster similarity computation than real-valued ones while requiring much less storage. As a result, many algorithms have recently been proposed to binarize floating-point descriptors so that they can be searched for quickly. Unfortunately, even if the similarity between vectors can be computed fast, exhaustive linear search remains impractical for truly large databases and approximate nearest neighbor (ANN) search is still required. It is therefore surprising that relatively little attention has been paid to the efficiency of ANN algorithms on binary vectors and this is the focus of this paper. We first show that binary-space Voronoi diagrams have thick boundaries, meaning that there are many points that lie at the same distance from two random points. This violates the implicit assumption made by most ANN algorithms that points can be neatly assigned to clusters centered around a set of cluster centers. As a result, state-of-the-art algorithms that can operate on binary vectors exhibit much lower performance than those that work with floating point ones. The above analysis is the first contribution of the paper. The second one is two effective ways to overcome this limitation, by appropriately randomizing either a tree-based algorithm or hashing-based one. In both cases, we show that we obtain precision/recall curves that are similar to those than can be obtained using floating point number calculation, but at much reduced computational cost. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据