4.7 Article

Bagging Constraint Score for feature selection with pairwise constraints

期刊

PATTERN RECOGNITION
卷 43, 期 6, 页码 2106-2118

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.patcog.2009.12.011

关键词

Feature selection; Constraint Score; Pairwise constraints; Bagging; Ensemble learning

资金

  1. National Science Foundation of China [60875030]

向作者/读者索取更多资源

Constraint Score is a recently proposed method for feature selection by using pairwise constraints which specify whether a pair of instances belongs to the same class or not. It has been shown that the Constraint Score, with only a small amount of pairwise constraints, achieves comparable performance to those fully supervised feature selection methods such as Fisher Score. However, one major disadvantage of the Constraint Score is that its performance is dependent on a good selection on the composition and cardinality of constraint set, which is very challenging in practice. In this work, we address the problem by importing Bagging into Constraint Score and a new method called Bagging Constraint Score (BCS) is proposed. Instead of seeking one appropriate constraint set for single Constraint Score, in BCS we perform multiple Constraint Score, each of which uses a bootstrapped subset of original given constraint set. Diversity analysis on individuals of ensemble shows that resampling pairwise constraints is helpful for simultaneously improving accuracy and diversity of individuals. We conduct extensive experiments on a series of high-dimensional datasets from UCI repository and gene databases, and the experimental results validate the effectiveness of the proposed method. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Geochemistry & Geophysics

Semisupervised Dimensionality Reduction With Pairwise Constraints for Hyperspectral Image Classification

Shiguo Chen, Daoqiang Zhang

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS (2011)

Article Computer Science, Artificial Intelligence

A New Locality-Preserving Canonical Correlation Analysis Algorithm for Multi-View Dimensionality Reduction

Fengshan Wang, Daoqiang Zhang

NEURAL PROCESSING LETTERS (2013)

Article Neurosciences

Identification of MCI individuals using structural and functional connectivity networks

Chong-Yaw Wee, Pew-Thian Yap, Daoqiang Zhang, Kevin Denny, Jeffrey N. Browndyke, Guy G. Potter, Kathleen A. Welsh-Bohmer, Lihong Wang, Dinggang Shen

NEUROIMAGE (2012)

Article Neurosciences

Ensemble sparse classification of Alzheimer's disease

Manhua Liu, Daoqiang Zhang, Dinggang Shen

NEUROIMAGE (2012)

Article Multidisciplinary Sciences

Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers

Daoqiang Zhang, Dinggang Shen

PLOS ONE (2012)

Proceedings Paper Computer Science, Artificial Intelligence

Iterative Laplacian Score for Feature Selection

Linling Zhu, Linsong Miao, Daoqiang Zhang

PATTERN RECOGNITION (2012)

Proceedings Paper Computer Science, Artificial Intelligence

Sparsity Preserving Canonical Correlation Analysis

Chen Zu, Daoqiang Zhang

PATTERN RECOGNITION (2012)

Proceedings Paper Computer Science, Artificial Intelligence

Semi-Supervised Sparse Label Fusion for Multi-atlas Based Segmentation

Qimiao Guo, Daoqiang Zhang

PATTERN RECOGNITION (2012)

Proceedings Paper Computer Science, Artificial Intelligence

MultiCost: Multi-stage Cost-sensitive Classification of Alzheimer's Disease

Daoqiang Zhang, Dinggang Shen

MACHINE LEARNING IN MEDICAL IMAGING (2011)

Proceedings Paper Computer Science, Artificial Intelligence

Predicting Clinical Scores Using Semi-supervised Multimodal Relevance Vector Regression

Bo Cheng, Daoqiang Zhang, Songcan Chen, Dinggang Shen

MACHINE LEARNING IN MEDICAL IMAGING (2011)

Proceedings Paper Computer Science, Information Systems

Identification of Individuals with MCI via Multimodality Connectivity Networks\

Chong-Yaw Wee, Pew-Thian Yap, Daoqiang Zhang, Kevin Denny, Lihong Wang, Dinggang Shen

MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2011), PT II (2011)

Proceedings Paper Computer Science, Theory & Methods

Confidence-Guided Sequential Label Fusion for Multi-atlas Based Segmentation

Daoqiang Zhang, Guorong Wu, Hongjun Jia, Dinggang Shen

MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT III (2011)

Proceedings Paper Computer Science, Theory & Methods

Multi-Modal Multi-Task Learning for Joint Prediction of Clinical Scores in Alzheimer's Disease

Daoqiang Zhang, Dinggang Shen

MULTIMODAL BRAIN IMAGE ANALYSIS (2011)

Article Computer Science, Artificial Intelligence

Exploiting sublimated deep features for image retrieval

Guang-Hai Liu, Zuo-Yong Li, Jing-Yu Yang, David Zhang

Summary: This article introduces a novel image retrieval method that improves retrieval performance by using sublimated deep features. The method incorporates orientation-selective features and color perceptual features, effectively mimicking these mechanisms to provide a more discriminating representation.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

Region-adaptive and context-complementary cross modulation for RGB-T semantic segmentation

Fengguang Peng, Zihan Ding, Ziming Chen, Gang Wang, Tianrui Hui, Si Liu, Hang Shi

Summary: RGB-Thermal (RGB-T) semantic segmentation is an emerging task that aims to improve the robustness of segmentation methods under extreme imaging conditions by using thermal infrared modality. The challenges of foreground-background distinguishment and complementary information mining are addressed by proposing a cross modulation process with two collaborative components. Experimental results show that the proposed method achieves state-of-the-art performances on current RGB-T segmentation benchmarks.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

F-SCP: An automatic prompt generation method for specific classes based on visual language pre-training models

Baihong Han, Xiaoyan Jiang, Zhijun Fang, Hamido Fujita, Yongbin Gao

Summary: This paper proposes a novel automatic prompt generation method called F-SCP, which focuses on generating accurate prompts for low-accuracy classes and similar classes. Experimental results show that our approach outperforms state-of-the-art methods on six multi-domain datasets.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

Residual Deformable Convolution for better image de-weathering

Huikai Liu, Ao Zhang, Wenqian Zhu, Bin Fu, Bingjian Ding, Shengwu Xiong

Summary: Adverse weather conditions present challenges for computer vision tasks, and image de-weathering is an important component of image restoration. This paper proposes a multi-patch skip-forward structure and a Residual Deformable Convolutional module to improve feature extraction and pixel-wise reconstruction.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

A linear transportation LP distance for pattern recognition

Oliver M. Crook, Mihai Cucuringu, Tim Hurst, Carola-Bibiane Schonlieb, Matthew Thorpe, Konstantinos C. Zygalakis

Summary: The transportation LP distance (TLP) is a generalization of the Wasserstein WP distance that can be applied directly to color or multi-channelled images, as well as multivariate time-series. TLP interprets signals as functions, while WP interprets signals as measures. Although both distances are powerful tools in modeling data with spatial or temporal perturbations, their computational cost can be prohibitively high for moderate pattern recognition tasks. The linear Wasserstein distance offers a method for projecting signals into a Euclidean space, and in this study, we propose linear versions of the TLP distance (LTLP) that show significant improvement over the linear WP distance in signal processing tasks while being several orders of magnitude faster to compute than the TLP distance.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

Learning a target-dependent classifier for cross-domain semantic segmentation: Fine-tuning versus meta-learning

Haitao Tian, Shiru Qu, Pierre Payeur

Summary: This paper proposes a method of target-dependent classifier, which optimizes the joint hypothesis of domain adaptation into a target-dependent hypothesis that better fits with the target domain clusters through an unsupervised fine-tuning strategy and the concept of meta-learning. Experimental results demonstrate that this method outperforms existing techniques in synthetic-to-real adaptation and cross-city adaptation benchmarks.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

KGSR: A kernel guided network for real-world blind super-resolution

Qingsen Yan, Axi Niu, Chaoqun Wang, Wei Dong, Marcin Wozniak, Yanning Zhang

Summary: Deep learning-based methods have achieved remarkable results in the field of super-resolution. However, the limitation of paired training image sets has led researchers to explore self-supervised learning. However, the assumption of inaccurate downscaling kernel functions often leads to degraded results. To address this issue, this paper introduces KGSR, a kernel-guided network that trains both upscaling and downscaling networks to generate high-quality high-resolution images even without knowing the actual downscaling process.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

Gait feature learning via spatio-temporal two-branch networks

Yifan Chen, Xuelong Li

Summary: Gait recognition is a popular technology for identification due to its ability to capture gait features over long distances without cooperation. However, current methods face challenges as they use a single network to extract both temporal and spatial features. To solve this problem, we propose a two-branch network that focuses on spatial and temporal feature extraction separately. By combining these features, we can effectively learn the spatio-temporal information of gait sequences.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

PAMI: Partition Input and Aggregate Outputs for Model Interpretation

Wei Shi, Wentao Zhang, Wei-shi Zheng, Ruixuan Wang

Summary: This article proposes a simple yet effective visualization framework called PAMI, which does not require detailed model structure and parameters to obtain visualization results. It can be applied to various prediction tasks with different model backbones and input formats.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

Disturbance rejection with compensation on features

Xiaobo Hu, Jianbo Su, Jun Zhang

Summary: This paper reviews the latest technologies in pattern recognition, highlighting their instabilities and failures in practical applications. From a control perspective, the significance of disturbance rejection in pattern recognition is discussed, and the existing problems are summarized. Finally, potential solutions related to the application of compensation on features are discussed to emphasize future research directions.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

ECLAD: Extracting Concepts with Local Aggregated Descriptors

Andres Felipe Posada-Moreno, Nikita Surya, Sebastian Trimpe

Summary: Convolutional neural networks are widely used in critical systems, and explainable artificial intelligence has proposed methods for generating high-level explanations. However, these methods lack the ability to determine the location of concepts. To address this, we propose a novel method for automatic concept extraction and localization based on pixel-wise aggregations, and validate it using synthetic datasets.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

Dynamic Graph Contrastive Learning via Maximize Temporal Consistency

Peng Bao, Jianian Li, Rong Yan, Zhongyi Liu

Summary: In this paper, a novel Dynamic Graph Contrastive Learning framework, DyGCL, is proposed to capture the temporal consistency in dynamic graphs and achieve good performance in node representation learning.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

ConvGeN: A convex space learning approach for deep-generative oversampling and imbalanced classification of small tabular datasets

Kristian Schultz, Saptarshi Bej, Waldemar Hahn, Markus Wolfien, Prashant Srivastava, Olaf Wolkenhauer

Summary: Research indicates that deep generative models perform poorly compared to linear interpolation-based methods for synthetic data generation on small, imbalanced tabular datasets. To address this, a new approach called ConvGeN, combining convex space learning with deep generative models, has been proposed. ConvGeN improves imbalanced classification on small datasets while remaining competitive with existing linear interpolation methods.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

H-CapsNet: A capsule network for hierarchical image classification

Khondaker Tasrif Noor, Antonio Robles-Kelly

Summary: In this paper, the authors propose H-CapsNet, a capsule network designed for hierarchical image classification. The network effectively captures hierarchical relationships using dedicated capsules for each class hierarchy. A modified hinge loss is utilized to enforce consistency among the involved hierarchies. Additionally, a strategy for dynamically adjusting training parameters is presented to achieve better balance between the class hierarchies. Experimental results demonstrate that H-CapsNet outperforms competing hierarchical classification networks.

PATTERN RECOGNITION (2024)

Article Computer Science, Artificial Intelligence

CS-net: Conv-simpleformer network for agricultural image segmentation

Lei Liu, Guorun Li, Yuefeng Du, Xiaoyu Li, Xiuheng Wu, Zhi Qiao, Tianyi Wang

Summary: This study proposes a new agricultural image segmentation model called CS-Net, which uses Simple-Attention Block and Simpleformer to improve accuracy and inference speed, and addresses the issue of performance collapse of Transformers in agricultural image processing.

PATTERN RECOGNITION (2024)