4.5 Article

Characterization of Arsenic Hepatobiliary Transport Using Sandwich-Cultured Human Hepatocytes

期刊

TOXICOLOGICAL SCIENCES
卷 145, 期 2, 页码 307-320

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfv051

关键词

arsenic; sandwich cultured hepatocytes; primary human hepatocytes; glutathione; multidrug resistance proteins (MRPs; ABCCs)

资金

  1. Canadian Institutes of Health Research [MOP-272075]
  2. Alberta Cancer Foundation [25842]
  3. Ida Hoffman Cancer Research Fund
  4. Alberta Innovates Health Solutions

向作者/读者索取更多资源

Arsenic is a proven human carcinogen and is associated with a myriad of other adverse health effects. This metalloid is methylated in human liver to monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), dimethylarsinic acid (DMA(V)), and dimethylarsinous acid (DMA(III)) and eliminated predominantly in urine. Hepatic basolateral transport of arsenic species is ultimately critical for urinary elimination; however, these pathways are not fully elucidated in humans. A potentially important human hepatic basolateral transporter is the ATP-binding cassette (ABC) transporter multidrug resistance protein 4 (MRP4/ABCC4) that in vitro is a high-affinity transporter of DMA(V) and the diglutathione conjugate of MMA(III) [MMA(GS)(2)]. In rats, the related canalicular transporter Mrp2/Abcc2 is required for biliary excretion of arsenic as As(GS)(3) and MMA(GS)(2). The current study used sandwich cultured human hepatocytes (SCHH) as a physiological model of human arsenic hepatobiliary transport. Arsenic efflux was detected only across the basolateral membrane for 9 out of 14 SCHH preparations, 5 had both basolateral and canalicular efflux. Basolateral transport of arsenic was temperature- and GSH-dependent and inhibited by the MRP inhibitor MK-571. Canalicular efflux was completely lost after GSH depletion suggesting MRP2-dependence. Treatment of SCHH with As-III (0.1-1 A mu M) dose-dependently increased MRP2 and MRP4 levels, but not MRP1, MRP6, or aquaglyceroporin 9. Treatment of SCHH with oltipraz (Nrf2 activator) increased MRP4 levels and basolateral efflux of arsenic. In contrast, oltipraz increased MRP2 levels without increasing biliary excretion. These results suggest arsenic basolateral transport prevails over biliary excretion and is mediated at least in part by MRPs, most likely including MRP4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据