4.6 Article

A rational molecular design on choosing suitable spacer for better host materials in highly efficient blue and white phosphorescent organic light-emitting diodes

期刊

ORGANIC ELECTRONICS
卷 15, 期 7, 页码 1368-1377

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.orgel.2014.03.028

关键词

Organic light-emitting diodes; White; Host materials; Carbazole; Spacer

资金

  1. Natural Science Foundation of China [21202114, 21161160446, 61036009, 61177016]
  2. National High-Tech Research Development Program [2011AA03A110]
  3. Natural Science Foundation of Jiangsu Province [BK2010003]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  5. Research Supporting Program of Suzhou Industrial Park

向作者/读者索取更多资源

A series of host materials, 3,3'-linked carbazole-based molecules have been designed with phenyl and biphenyl spacers. Their optical and electrical properties can be fine-tuning by the spacers. Their HOMO energy levels depend on HOMO distributions within the range of -5.64 to -5.96 eV. On the other hand, the three compounds have similar LUMO energy levels and triplet energies. Their thermal, photophysical, electrochemical and carrier mobilities properties were also systematically investigated. The relationship between the molecular structures and optoelectronic properties are discussed. A blue PHOLED device incorporating PBCz achieved a maximum external quantum efficiency, current efficiency, and power efficiency of 19.5%, 45.5 cd/A and 43.8 lm/W, respectively. Moreover a two-color, all-phosphor and single-emitting-layer WOLED hosted by PBCz was also achieved with a maximum external quantum efficiency, current efficiency and power efficiency of 24.6%, 76.3 cd/A and 69.4 lm/W respectively. Furthermore, we also utilized this versatile host for three-component RGB white PHOLEDs and show excellent performance. For example, combination of PBCz with FIrpic, Ir(ppy)(2)(acac) and Ir(MDQ)(2)(acac) in the active layer, the resulting WOLEDs showed three evenly separated peaks and gave a high efficiency of 49.2 cd/A. The efficient PHOLEDs demonstrated that the versatile host PBCz has great potential for applications in the solid-state lighting. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据