4.6 Article

Unveiling the phytoalexin biosynthetic puzzle in salt cress: unprecedented incorporation of glucobrassicin into wasalexins A and B

期刊

ORGANIC & BIOMOLECULAR CHEMISTRY
卷 8, 期 22, 页码 5150-5158

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ob00265h

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canada Research Chair
  3. Canada Foundation for Innovation
  4. Saskatchewan Government
  5. University of Saskatchewan

向作者/读者索取更多资源

Salt cress (Thellungiella salsuginea also known as T. halophila) is a wild cruciferous extremophile highly resistant to salt, drought, and cold. The recent discovery that salt cress produces the phytoalexins wasalexins A and B, and the phytoanticipins 1-methoxyglucobrassicin and 4-methoxyglucobrassicin in relatively higher amounts than other cruciferous species, prompted investigation of their biosynthetic relationships. Toward this end, perdeuterated 1-methoxybrassinin, L-Trp, glucobrassicin, 1-methoxyindolyl-3-acetaldoxime, brassinin, and methionine, as well as the corresponding natural abundance compounds, were administered to salt cress plants previously irradiated with UV-light (lambda(max) 254 nm). Remarkably, administration of hexadeuterated glucobrassicin led to incorporation of several deuterium atoms into wasalexins A and B, 1-methoxyglucobrassicin and 4-methoxyglucobrassicin. This unprecedented discovery suggests that glucobrassicin is a biosynthetic precursor of wasalexins and methoxylated glucosinolates in salt cress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据