4.6 Article

Lp regularization for early gate fluorescence molecular tomography

期刊

OPTICS LETTERS
卷 39, 期 14, 页码 4156-4159

出版社

OPTICAL SOC AMER
DOI: 10.1364/OL.39.004156

关键词

-

类别

资金

  1. National Institutes of Health [R21 CA161782, R21 EB013421]
  2. National Science Foundation CAREER AWARD [CBET-1149407]
  3. Div Of Chem, Bioeng, Env, & Transp Sys
  4. Directorate For Engineering [1149407] Funding Source: National Science Foundation

向作者/读者索取更多资源

Time domain fluorescence molecular tomography (TD-FMT) provides a unique dataset for enhanced quantification and spatial resolution. The time-gate dataset can be divided into two temporal groups around the maximum counts gate, which are early gates and late gates. It is well established that early gates allow for improved spatial resolution and late gates are essential for fluorophore unmixing and concentration quantification. However, the inverse problem of FMT is ill-posed and typically underdetermined, which makes image reconstruction highly susceptible to data noise. More specifically, photon counts are inherently very low at early gates due to high absorption and scattering of tissue, resulting in a low signal-to-noise ratio and unstable reconstructions. In this work, an L-p regularization-based reconstruction algorithm was developed and tested with our wide-field mesh-based Monte Carlo simulation strategy. We compared the early time-gate reconstructions obtained with the different p (p is an element of{1/16; 1/8; 1/4; 1/3; 1/2; 1,2}) from a synthetic murine model simulating the fluorophore uptake in the kidneys and preclinical data. The results from a 3D mouse atlas and a mouse experiment show that our L-1/4 regularization methods give the best performance for early time gates reconstructions. (C) 2014 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据