4.6 Article

Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency

期刊

OPTICS EXPRESS
卷 20, 期 19, 页码 20902-20907

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.20.020902

关键词

-

类别

资金

  1. National Natural Science Foundation of China [10874239, 10604066]

向作者/读者索取更多资源

We have proposed a metal-insulator-metal (MIM) waveguide system, which exhibits a significant slow-light effect, based on a plasmonic analogue of electromagnetically induced transparency (EIT). By appropriately adjusting the distance between the two stubs of a unit cell, a flat band corresponding to nearly constant group index over a broad bandwidth of 8.6 THz can be achieved. The analytical results show that the group velocity dispersion (GVD) parameter can reach zero and normalized delay-bandwidth product (NDBP) is more than 0.522. Finite-Difference Time-Domain (FDTD) simulations show that the incident pulse can be slowed down without distortion owing to the low dispersion. The proposed compact configuration can avoid the distortion of signal pulse, and thus may find potential applications in plasmonic slow-light systems, especially optical buffers. (C) 2012 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据