4.6 Article

Noise reduction in a laser polarimeter based on discrete waveplate rotations

期刊

OPTICS EXPRESS
卷 16, 期 3, 页码 2091-2108

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.16.002091

关键词

-

类别

向作者/读者索取更多资源

While several analyses of polarimeter noise-reduction have been published, little data has been presented to support the analytical results, particularly for a laser polarimeter based on measurements taken at discrete, independent rotation angles of two birefringent waveplates. This paper derives and experimentally demonstrates the reduction of both system and speckle noise in this type of laser polarimeter, achieved by optimizing the rotation angles of the waveplates by minimizing the condition numbers of the appropriate matrix equation. Results are demonstrated experimentally in signal-to-noise ratio (SNR) variations for a range of materials and spatial bandwidths. Use of optimal waveplate angles is found to improve the average SNR of the normalized Mueller matrix over speckle by a factor of up to 8 for a non-depolarizing material, but to provide little improvement for a depolarizing material. In the limit of zero spatial bandwidth, the average SNR of the normalized Mueller matrix over speckle is found to be greater than one for a non-depolarizing material and less than one for a depolarizing material. (c) 2008 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据