4.5 Article

Plasmonic modulator optimized by patterning of active layer and tuning permittivity

期刊

OPTICS COMMUNICATIONS
卷 285, 期 24, 页码 5500-5507

出版社

ELSEVIER
DOI: 10.1016/j.optcom.2012.07.117

关键词

Modulators; Surface plasmons; Plasmonic waveguides; Integrated circuits; Electro-optical devices; Waveguide Bragg gratings

类别

资金

  1. Danish Research Council for Technology and Production Sciences via the THz COW project

向作者/读者索取更多资源

We study an ultra-compact plasmonic modulator that can be applied in photonic integrated circuits. The modulator is a metal-insulator-metal waveguide with an additional ultra-thin layer of indium tin oxide (ITO). Bias is applied to the multilayer core by means of metal plates that serve as electrodes. External field changes carrier density in the ultra-thin ITO layer, which influences the permittivity. The metal-insulator-metal system possesses a plasmon resonance, and it is strongly affected by changes in the permittivity of the active layer. We propose several optimizations to improve performance of the structure. We examine influence of the ITO permittivity on the modulator's performance and point out appropriate values. We analyze eigenmodes of the waveguide structure and specify the range for its efficient operation. We show that substituting the continuous active layer by one-dimension periodic stripes increases transmittance through the device and keeps the modulator's performance at the same level. The dependence on the pattern size and filling factor of the active material is analyzed and optimum parameters are found. Patterned ITO layers allow us to design a Bragg grating inside the waveguide. The grating can be turned on and off, thus modulating reflection from the structure. The considered structure with electrical control possesses a high performance and can efficiently work as a plasmonic component in nanophotonic architectures. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据