4.7 Article

The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles

期刊

OPTICS AND LASER TECHNOLOGY
卷 42, 期 5, 页码 783-789

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.optlastec.2009.12.003

关键词

Silver nanoparticles; Thermo-optical properties; Nonlinear refraction

向作者/读者索取更多资源

The thermo-optical properties of colloidal silver nanoparticles (AgNPs) are investigated under a low power laser irradiation at 532 nm. Colloidal AgNPs are synthesized by nanosecond pulsed laser ablation of a pure silver plate in distilled water. The morphology and size of the AgNPs are determined by transmission electron microscopy. Closed Z-scan measurements reveal that nonlocal thermo-optic process is responsible for the nonlinear refractive index of colloid containing different concentrations of silver nanoparticles. The Z-scan behavior of the nanoparticle samples has been investigated based on a nonlocal thermo-optic process and it is shown that the aberrant thermal lens model is in excellent agreement with the experimental results. Z-scan measurement fits have allowed the values of nonlinear refractive index (n(2)) and thermo-optic coefficients (dn/dt) to be determined at different concentrations of silver nanoparticles. Large enhancement factors were measured for values of n2 and dn/dt of the colloids at higher silver nanoparticle volume fraction. Our results suggest that nonlocal thermal nonlinear processes will play an important role in the development of photonic applications involving metal nanoparticle colloids. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Optics

Chirped fiber Bragg grating enabled mode-dependent gain equalization of 2-mode EDFA

Zhi-Huan Pang, Meng Liu, Ai-Ping Luo, Yi Xu, Wen-Cheng Xu, Songnian Fu, Zhi-Chao Luo

Summary: We propose a novel mode-dependent gain equalizer using a few-mode chirped fiber Bragg grating (FM-CFBG) to effectively mitigate the mode-dependent gain in an all-fiber 2-mode EDFA. The equalizer based on FM-CFBG offers compact size, low insertion loss, and wavelength scalability, making it meaningful for long-haul MDM transmission.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Peripheral-photoinhibition-based direct laser writing with isotropic 30 nm feature size using a pseudo 3D hollow focus

Yiwei Qiu, Chenliang Ding, Gangyao Zhan, Mengdi Luo, Jisen Wen, Mengbo Tang, Chun Cao, Wenjie Liu, Liang Xu, Bihu Lv, Dazhao Zhu, Cuifang Kuang, Xu Liu

Summary: This article proposes a novel method to simultaneously reduce the axial and lateral feature sizes of PPI-DLW. By employing a pseudo 3D hollow focus, a suspended nanowire with an isotropic 30-nm feature size was realized, thereby improving the capabilities of PPI-DLW for fabricating arbitrary 3D structures.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Low-power and wide-band 1 x 8 silica waveguide optical switch

Manzhuo Wang, Jianbo Yue, Zhentao Yao, Tingyu Liu, Xiaoqiang Sun, Yuanda Wu, Daming Zhang

Summary: A silica waveguide 1×8 thermo-optic switch consisting of cascaded three-stage Mach-Zehnder interferometers (MZIs) is successfully demonstrated. The switch utilizes a multimode interference (MMI) coupler in the MMI-MZI 1×2 switch unit for its wavelength insensitivity and favorable fabrication tolerance. The switch design and optimization is based on the beam propagation method (BPM) and implemented using standard CMOS technologies. Experimental results show that the switch meets the requirements for insertion loss and crosstalk at 1550 nm wavelength, and also performs well in a wide wavelength range.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Acoustically levitated whispering-gallery mode microlasers

H. M. de la Cruz, E. D. Hernandez-Campos, E. Ortiz-Ricardo, A. Martinez-Borquez, I. Rosas-Roman, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia I. Zurita-Lopez, R. Castro-Beltran

Summary: Acoustic levitation is an important contactless manipulation technique in various fields. This study presents an affordable phased-array levitator that can stably trap micrometer dye-doped droplets in the air, enabling the creation of microlasers. The levitated microlasers exhibit comparable optical lasing features to On-a-Chip devices, with a maximum Q-factor of approximately 105 and a minimum lasing threshold of approximately 150 nJ cm-2.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Structured light reconstruction by Computer-Generated hologram in defect state

Yuqi Wang, Zilong Zhang, Suyi Zhao, Wei He, Xiaotian Li, Xin Wang, Yuchen Jie, Changming Zhao

Summary: This paper investigates the impact of localized defects in SLM devices on structured light generation and demonstrates the reconstructed light field results under different defect states using CGH loaded onto the DMD. The results show that central defects have minimal influence on the reconstructed light field, while edge defects have a significant impact. This study expands the application scenarios for the generation of structured light beams with SLM.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Monitoring of the post-tensile structures camber using the terrestrial close-range photogrammetry

Ashraf A. A. Beshr, Hossam El-Din Fawzy, Ehab A. A. Eldin, Jong Wan Hu, Fathi A. Abdelmgeed

Summary: This paper introduces the application of digital measuring techniques, specifically Digital Close Range Photogrammetry (DCRP), in the detection of deformation in post-tensioned structural elements (PTSEs). The use of digital equipment and a terrestrial laser scanner (TLS) allows for highly accurate monitoring of PTSE camber, with deviations not exceeding 0.01 mm.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Online defect detection method of optical cable pitch based on machine vision technology and deep learning algorithms

Shihao Gou, Danping Huang, Shipeng Liao, Fan Luo, Yang Yuan, Liang Liu, Xiaomei Wen

Summary: This paper proposes an online intelligent detection method for cable pitch defects in the field of optical cable manufacturing. The method utilizes a multi-sensor fusion image acquisition platform and deep learning technology to achieve accurate detection of pitch defects in optical cables.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

300-Gbit/s/λ 8-Level Pulse-Amplitude-Modulation (PAM8) with a silicon microring modulator utilizing long short term memory regression and deep neural network classification

Tun-Yao Hung, David W. U. Chan, Ching-Wei Peng, Chi-Wai Chow, Hon Ki Tsang

Summary: We present the first experimental demonstration of a high-capacity short-reach optical communication link which utilizes LSTM and DNN to achieve 300 Gbit/s 8-level pulse amplitude modulation (PAM8) generated by a single microring modulator. The experimental results show that 300 Gbit/s and 270 Gbit/s PAM8 modulation can be achieved at back-to-back and after 1 km transmission respectively.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

A practical in-line FM-EDFA based on cladding pumping for MIMO-free MDM amplification and transmission

Long Zhang, Li Pei, Jianshuai Wang, Jingjing Zheng, Kaihua Hu, Zhiqi Li, Tigang Ning, Jing Li, Li Zhong, Ruisi He

Summary: The amplification of long-haul mode division multiplexing (MDM) transmission systems is currently achieved through three steps, which can result in complexity and degraded transmission performance. To address this issue, this paper proposes an in-line few-mode erbium-doped fiber amplifier (FM-EDFA) based on cladding pumping, which enables simultaneous amplification and transmission in MDM systems. Experimental results demonstrate that the in-line FM-EDFA has excellent performance and shows great potential for practical long-haul transmission systems.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Experimental study on the implementation method of short pulse laser in distance-selective imaging system

Chong Wang, Miaomiao Li, Jiahao Yang, Bingli Zhu, Jianghao Han, Wenbin Dang

Summary: This paper introduces the design of drive circuits using step recovery diodes and RF bipolar transistors to produce narrow pulse lasers, achieving the reduction of system size, power consumption and cost.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Microstructure development and cavitation erosion resistance enhancement of additive manufactured Hastelloy C276 alloy coating on martensitic stainless-steel via directed energy deposition

Ziqian Zhang, Liangyu Zhao, Chaorun Si, Yang Tian, Shilin Xu

Summary: A Hastelloy C276 coating was prepared on a martensitic stainless-steel substrate using laser melting deposition, resulting in a coating with high resistance to cavitation erosion. The coating exhibited a thick, progressively changing grain morphology from bottom to top, and the grains grew in a specific angle to the substrate plane. A compositional mixing zone was formed at the interface, forming a stable metallurgical bond. The coating showed a significantly improved hardness and enhanced resistance to cavitation erosion compared to the substrate.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Structure characterization of nanoparticles with optical tweezers using scattering light

Cui-Hong Li, Chao-Xiong He, Yuan-Yuan Ma, Jin-Chuan Wang, Ying Dong, Shao-Chong Zhu, Xiao-Wen Gao, Hui-Zhu Hu

Summary: In this paper, a non-contact optical measuring method for characterizing nanoparticles using optical tweezers is presented. The method relies on the optical polarization and scattering of nanoparticles, providing insights into both shape and size parameters. Experimental results show that the method can accurately measure the shape and size of nanoparticles, making it an effective tool for identifying and studying individual nanoparticles.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Low cost sol gel derived silica-titania waveguide films - Characterization

Magdalena Zieba, Cuma Tyszkiewicz, Katarzyna Wojtasik, Krystian Pavlov, Pawel Chaber, Ewa Gondek, Jacek Niziol, Roman Rogozinski, Pawel Kielan, Pawel Karasinski

Summary: This work presents a study on low-loss waveguide layers for planar evanescent wave sensor applications. Crack-free SiOx:TiOy composite layers with refractive indices of approximately 1.65 were fabricated using a sol-gel method and dip-coating technique. The fabricated layers exhibited good waveguide properties and optical homogeneity.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Engineering optical properties of silver nanoparticles for broadband absorbing metasurfaces based on a lithography-free process

Yali He, Jiao Tang, Zhongyang Li, Yaowu Hu

Summary: In this paper, a lithography-free broadband absorbing metasurface consisting of Ag nanoparticles with ultrafine nanogaps is demonstrated. The experimental results and numerical simulations show that the horizontally compressed Ag nanoparticles possess smaller nanogaps for high sensitivity, uniformity, and stability. The novel substrate also exhibits insensitivity to the incident or observation angle in an ambient environment and has promising practical applications.

OPTICS AND LASER TECHNOLOGY (2024)

Article Optics

Stretchable polymer optical fiber embedded in the mattress for respiratory and heart rate monitoring

Linqing Li, Chengwei Yang, Zhuo Wang, Kun Xiao, Rui Min

Summary: In this study, a stretchable polymer optical fiber with a sandwich structure was proposed for sleep monitoring. The fiber improved the pressure sensitivity of the mattress and enabled the measurement of respiratory rate, heart rate, and body motion information.

OPTICS AND LASER TECHNOLOGY (2024)