4.3 Article

CXCR7/CXCR4/CXCL12 Axis Regulates the Proliferation, Migration, Survival and Tube Formation of Choroid-Retinal Endothelial Cells

期刊

OPHTHALMIC RESEARCH
卷 50, 期 1, 页码 6-12

出版社

KARGER
DOI: 10.1159/000348532

关键词

Choroid-retinal endothelial cell; Stromal cell-derived factor-1; CXCR4; CXCR7

向作者/读者索取更多资源

Background/Aims: Stromal cell-derived factor-1 (SDF-1) has been shown to mediate a broad range of biological processes via CXCR4, once regarded as its only receptor. CXCR7 is a recently identified receptor for SDF-1. This study aimed to investigate whether the CXCR7/CXCR4/SDF-1 axis is involved in choroidal neovascularization (CNV) formation in an in vitro hypoxic model. Methods: CXCR7 siRNA and/or CXCR4 siRNA was transfected into a hypoxic model of the choroid-retinal endothelial RF/6A cell line. CCK-8 analysis, transwell migration analysis, annexin V-FITC and propidium iodide staining, and Matrigel tube formation analysis were performed to investigate the role of CXCR4 and CXCR7 in SDF-1-induced proliferation, migration, survival and tube formation of RF/6A cells. Results: CXCR4, but not CXCR7, mediates SDF-1-induced RF/6A cell migration and proliferation under hypoxic conditions, whereas CXCR7 was exclusively involved in RF/6A cell survival. In addition, CXCR7 and CXCR4 acted together to regulate RF/6A cell tube formation. Conclusion:The CXCR7/CXCR4/SDF-1 axis plays an important role in the formation of CNV, and may become a novel target for the treatment of CNV-associated diseases. Copyright (C) 2013 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据