4.8 Article

Plk1 depletion in nontransformed diploid cells activates the DNA-damage checkpoint

期刊

ONCOGENE
卷 27, 期 28, 页码 3935-3943

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2008.36

关键词

checkpoint; DNA damage; nontransformed cell

资金

  1. NIGMS NIH HHS [GM59172] Funding Source: Medline

向作者/读者索取更多资源

We previously reported that polo-like kinase 1 (Plk1) depletion by lentivirus-based RNA interference led to mitotic arrest and apoptosis in cancer cells, whereas normal diploid cell lines, hTERT-RPE1 and MCF10A, survived a similar level of depletion. To study homogeneous cell lines, we generated several Plk1-depleted hTERT-RPE1 and MCF10A clones that were derived from single cells depleted of Plk1. We found that in the longterm, Plk1 depletion slowed proliferation of hTERT-RPE1 cells, apparently due to attenuated progression through S phase. These cells had altered morphology and were elongated compared with control. In contrast, MCF10A clones with mild levels of depletion showed no obvious phenotype. They appeared to have normal proliferation rates with no cell-cycle arrest. However, one MCF10A clone, which was severely depleted of Plk1, although viable, showed sporadic G2/M arrest and apoptosis. This MCF10A clone and all the hTERT-RPE1 clones displayed evidence of DNA-damage checkpoint activation. These data further support the interpretation that cancer cell lines have a much greater requirement for Plk1 than normal nontransformed diploid cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据