3.9 Article

Nucleic Acid Delivery with Chitosan Hydroxybenzotriazole

期刊

OLIGONUCLEOTIDES
卷 20, 期 3, 页码 127-136

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/oli.2009.0227

关键词

-

资金

  1. National Nanotechnology Center (NANOTEC), Thailand [NN-B-22-EN3-17-52-10]
  2. Commission of Higher Education (Thailand)
  3. Thailand Research Funds [DBG5180005]

向作者/读者索取更多资源

The objective of this study was to investigate the transfection efficiency of chitosan hydroxybenzotriazole (CS-HOBT) for in vitro nucleic acid delivery. The results revealed that CS-HOBT was able to condense with DNA/small interfering double-stranded RNA molecules (siRNA). Illustrated by agarose gel electrophoresis, complete complexes of CS-HOBT/DNA were formed at a weight ratio of above 3, whereas those of CS-HOBT/siRNA were formed at a weight ratio of above 4 (CS molecular weights [MWs] 20 and 45 kDa) and above 2 (CS MWs 200 and 460 kDa). Gel electrophoresis results indicated that binding of CS-HOBT and DNA or siRNA depended on the MW and weight ratio. The particle sizes of CS-HOBT/nucleic acid complexes were in nanosize range. The highest transfection efficiency of CS-HOBT/DNA complex was found at a weight ratio of 2, with the lowest CS MW of 20 kDa. The CS-HOBT-mediated siRNA silencing of the enhanced green fluorescent protein gene occurred maximally with 60% efficiency. The CS-HOBT/siRNA complex with the lowest CS MW of 20 kDa at a weight ratio of 80 showed the strongest inhibition of gene expression. For cytotoxicity studies, over 80% the average cell viabilities of the complexes were observed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. This study suggests that CS-HOBT is straightforward to prepare, is safe, and exhibits significantly improved nucleic acid delivery potential in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据