4.5 Article

Herbivory and population dynamics of invasive and native Lespedeza

期刊

OECOLOGIA
卷 161, 期 1, 页码 57-66

出版社

SPRINGER
DOI: 10.1007/s00442-009-1354-5

关键词

Congeneric comparison; Demography; Enemy release hypothesis; Fitness; Matrix model

类别

资金

  1. St. Louis University
  2. Tyson Research Center's Crescent Hills Research Fund
  3. Washington University, St. Louis, MO

向作者/读者索取更多资源

Some exotic plants are able to invade habitats and attain higher fitness than native species, even when the native species are closely related. One explanation for successful plant invasion is that exotic invasive plant species receive less herbivory or other enemy damage than native species, and this allows them to achieve rapid population growth. Despite many studies comparing herbivory and fitness of native and invasive congeners, none have quantified population growth rates. Here, we examined the contribution of herbivory to the population dynamics of the invasive species, Lespedeza cuneata, and its native congener, L. virginica, using an herbivory reduction experiment. We found that invasive L. cuneata experienced less herbivory than L. virginica. Further, in ambient conditions, the population growth rate of L. cuneata (lambda = 20.4) was dramatically larger than L. virginica (lambda = 1.7). Reducing herbivory significantly increased fitness of only the largest L. virginica plants, and this resulted in a small but significant increase in its population growth rate. Elasticity analysis showed that the growth rate of these species is most sensitive to changes in the seed production of small plants, a vital rate that is relatively unaffected by herbivory. In all, these species show dramatic differences in their population growth rates, and only 2% of that difference can be explained by their differences in herbivory incidence. Our results demonstrate that to understand the importance of consumers in explaining the relative success of invasive and native species, studies must determine how consumer effects on fitness components translate into population-level consequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据