4.8 Article

Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

期刊

NUCLEIC ACIDS RESEARCH
卷 41, 期 1, 页码 391-404

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gks1023

关键词

-

资金

  1. Biotechnology and Biological Sciences Research Council [BB/C513077/1]
  2. Wellcome Trust [078794]
  3. Biotechnology and Biological Sciences Research Council [BB/C513077/1] Funding Source: researchfish

向作者/读者索取更多资源

Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A(2)B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A(2)B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A(2)B units, each bound to a recognition site, with two more A(2)B units bridging the complexes by protein-protein interactions between the nuclease domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据