4.8 Article

Computational inference of mRNA stability from histone modification and transcriptome profiles

期刊

NUCLEIC ACIDS RESEARCH
卷 40, 期 14, 页码 6414-6423

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gks304

关键词

-

资金

  1. National Basic Research [973] Program of China [2010CB944904]
  2. National Natural Science Foundation of China [31028011]
  3. NIH [HG4069]

向作者/读者索取更多资源

Histone modifications play important roles in regulating eukaryotic gene expression and have been used to model expression levels. Here, we present a regression model to systematically infer mRNA stability by comparing transcriptome profiles with ChIP-seq of H3K4me3, H3K27me3 and H3K36me3. The results from multiple human and mouse cell lines show that the inferred unstable mRNAs have significantly longer 3'Untranslated Regions (UTRs) and more microRNA binding sites within 3'UTR than the inferred stable mRNAs. Regression residuals derived from RNA-seq, but not from GRO-seq, are highly correlated with the half-lives measured by pulse-labeling experiments, supporting the rationale of our inference. Whereas, the functions enriched in the inferred stable and unstable mRNAs are consistent with those from pulse-labeling experiments, we found the unstable mRNAs have higher cell-type specificity under functional constraint. We conclude that the systematical use of histone modifications can differentiate non-expressed mRNAs from unstable mRNAs, and distinguish stable mRNAs from highly expressed ones. In summary, we represent the first computational model of mRNA stability inference that compares transcriptome and epigenome profiles, and provides an alternative strategy for directing experimental measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据