4.8 Article

Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population

期刊

NUCLEIC ACIDS RESEARCH
卷 38, 期 15, 页码 5023-5035

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkq193

关键词

-

资金

  1. National Institute on Aging, National Institutes of Health
  2. National Institute on Aging [ES12512, CA92584]

向作者/读者索取更多资源

XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R mutation abolished the interaction with POL beta, but did not disrupt the interactions with PARP-1, LIG3 alpha and PCNA; and an E98K substitution, identified in EM-C12, reduced protein integrity, marginally destabilized the POL beta interaction, and slightly enhanced DNA binding. Two rare (P161L and Y576S) and two frequent (R194W and R399Q) amino acid population variants had little or no effect on XRCC1 protein stability or the interactions with POL beta, PARP-1, LIG3 alpha, PCNA or DNA. One common population variant (R280H) had no pronounced effect on the interactions with POL beta, PARP-1, LIG3 alpha and PCNA, but did reduce DNA-binding ability. When expressed in HeLa cells, the XRCC1 variants-excluding E98K, which was largely nucleolar, and C389Y, which exhibited reduced expression-exhibited normal nuclear distribution. Most of the protein variants, including the V86R POL beta-interaction mutant, displayed normal relocalization kinetics to/from sites of laser-induced DNA damage: except for E98K and C389Y, and the polymorphic variant R280H, which exhibited a slightly shorter retention time at DNA breaks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据